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1 Getting Started

Aerospace Blockset Product Description
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Model, simulate, and analyze aerospace vehicle dynamics

Aerospace Blockset provides Simulink® reference examples and blocks for modeling, simulating, and
analyzing high-fidelity aircraft and spacecraft platforms. It includes vehicle dynamics, validated
models of the flight environment, and blocks for pilot behavior, actuator dynamics, and propulsion.
Built-in aerospace math operations and coordinate system and spatial transformations let you
represent aircraft and spacecraft motion and orientation. To examine simulation results, you can
connect 2D and 3D visualization blocks to your model.

Aerospace Blockset provides standard model architectures for building reusable vehicle platform
models. These platform models can support flight and mission analysis; conceptual studies; detailed
mission design; guidance, navigation, and control (GNC) algorithm development; software integration
testing; and hardware-in-the-loop (HIL) testing for applications in autonomous flight, radar, and
communications.



Code Generation Support

Code Generation Support

Use the Aerospace Blockset software with the Simulink Coder software to automatically generate
code for real-time execution in rapid prototyping and for hardware-in-the-loop systems.
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Support for Aerospace Toolbox Quaternion Functions

The Aerospace Blockset product supports the following Aerospace Toolbox quaternion functions in
the MATLAB Function block:

quatconj
quatinv
quatmod
quatmultiply
quatdivide
quatnorm
qguatnormalize

For further information on using the MATLAB Function block, see:

* “Implementing MATLAB Functions Using Blocks”
* asbQuatEML example, which illustrates quaternions and models the equations

1-4
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Explore the NASA HL-20 Model

Explore the NASA HL-20 Model

In this section...

“Introduction” on page 1-5

“What This Example Illustrates” on page 1-5
“Open the Model” on page 1-5

“Key Subsystems” on page 1-7

“NASA HL-20 Example” on page 1-8
“Modify the Model” on page 1-10

Introduction

This section introduces a NASA HL-20 lifting body airframe model that uses blocks from the
Aerospace Blockset software to simulate the airframe of a NASA HL-20 lifting body, in conjunction
with other Simulink blocks.

The model simulates the NASA HL-20 lifting body airframe approach and landing flight phases using
an automatic-landing controller.

For more information on this model, see “NASA HL-20 Lifting Body Airframe” on page 3-14.

What This Example Illustrates

The NASA HL-20 lifting body airframe example illustrates the following features of the blockset:

Representing bodies and their degrees of freedom with the Equations of Motion library blocks
Using the Aerospace Blockset blocks with other Simulink blocks

Feeding Simulink signals to and from Aerospace Blockset blocks with Actuator and Sensor blocks
Encapsulating groups of blocks into subsystems

Visualizing an aircraft with Simulink 3D Animation™ and Aerospace Blockset Flight Instrument
library blocks.

Open the Model

To open the NASA HL-20 airframe example, type the example name, aeroblk HL20, at the
MATLAB® command line. The model opens.

1-5
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Explore the NASA HL-20 Model
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Key Subsystems

The model implements the airframe using the following subsystems:
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* The 6DOF (Euler Angles) subsystem implements the 6DOF (Euler Angles) block along with other
Simulink blocks.

* The Environment Models subsystem implements the WGS84 Gravity Model and COESA
Atmosphere Model blocks. It also contains a Wind Models subsystem that implements a number of
wind blocks.

* The Alpha, Beta, Mach subsystem implements the Incidence, Sideslip, & Airspeed, Mach Number,
and Dynamic Pressure blocks. These blocks calculate aerodynamic coefficient values and lookup
functionality.

* The Forces and Moments subsystem implements the Aerodynamic Forces and Moments block.
This subsystem calculates body forces and body moments.

* The Aerodynamic Coefficients subsystem implements several subsystems to calculate six
aerodynamic coefficients.

NASA HL-20 Example

Running an example lets you observe the model simulation in real time. After you run the example,
you can examine the resulting data in plots, graphs, and other visualization tools. To run this model,
follow these steps:

If it is not already open, open the aeroblk HL20 example.
In the Simulink Editor, from the Simulation tab, select Run.

The simulation proceeds until the aircraft lands:

©® aeroblk_HL20 = O *
File  View \Viewpoints MNavigation Rendering Simulation Recording Help N
Fixed Position vily ~vdMms2|dd|e | EH|RE|) =

Fixed Position i |Fly Pos:[-841.52 15,60 -101.80] Dir[0.89 0.00 0.45]

View of the landed airframe
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Modify the Model

You can adjust the airframe model settings and examine the effects on simulation performance. Here
is one modification that you can try. It changes the camera point of view for the landing animation.

Change the Animation Point of View

By default, the airframe animation viewpoint is Rear position, which means the view tracks with
the airframe flight path from the rear. You can change the animation point of view by selecting
another viewpoint from the Simulink 3D Animation viewer:

1 Open the aeroblk HL20 model, and click the Simulink 3D Animation viewer.

2 From the list of existing viewpoints, change the viewpoint to Fixed Position.


matlab:aeroblk_HL20

Explore the NASA HL-20 Model
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The airframe view changes to a fixed position.

@® aeroblk_HL20

File View Viewpoints

Mavigation

= O X

Rendering  Simulation Recording Help L]

Fixed Position

vlFly

Fixed Position

vidme|sa|dd|e |BE@E|r =

Start the model again. Notice the different airframe viewpoint when the airframe lands.

You can experiment with different viewpoints to watch the animation from different perspectives.

See Also

6DOF (Euler Angles) | Incidence, Sideslip, & Airspeed | Mach Number | Dynamic Pressure |
Aerodynamic Forces and Moments
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Related Examples
. “Flight Instrument Gauges” on page 2-41
. “Simulink 3D Animation Viewer” (Simulink 3D Animation)
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Open Aerospace Examples

To open an Aerospace Blockset example from the Help Browser:

1 Open the MATLAB Command Window.
2 Click the question mark.
3 Navigate to Aerospace Blockset and click the Examples tab.

See Also

Related Examples

. “Ideal Airspeed Correction” on page 3-2
. “1903 Wright Flyer” on page 3-7
. “NASA HL-20 Lifting Body Airframe” on page 3-14

1-13
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Create Aerospace Models

2-2

Basic Steps

Regardless of the model complexity, you use the same essential steps for creating an aerospace model
as you would for creating any other Simulink model.

1

Open the Aerospace Blockset Library. You can access this library through the Simulink Library
Browser or directly open the Aerospace Blockset window from the MATLAB command line:

aerolib

Double-click any library in the window to display its contents. The following figure shows the
Aerospace Blockset library window.

F
i D —
-
“ | | 98
Equationzs Propulsion Actuators Flight Instruments Pilat Models
of Motion
5N —
— -
VI=J |9 (S
—
H(s)
GNC Environment Asrodynamics Mass Flight
Properties Parameters
> - (%
==L Y, Info Examples
"
Utilities Animation Spacecraft

Select and position the blocks. You must first select the blocks that you need to build your model,
and then position the blocks in the model window. For the majority of Simulink models, you select
one or more blocks from each of the following categories:

a Source blocks generate or import signals into the model, such as a sine wave, a clock, or
limited-band white noise.

b  Simulation blocks can consist of almost any type of block that performs an action in the
simulation. A simulation block represents a part of the model functionality to be simulated,
such as an actuator block, a mathematical operation, a block from the Aerospace Blockset
library, and so on.

¢ Signal Routing blocks route signals from one point in a model to another. If you need to
combine or redirect two or more signals in your model, you will probably use a Simulink
Signal Routing block, such as Mux and Demux.

As an alternative to the Mux block, consider the Vector option of the Vector Concatenate
block Mode parameter. This block provides a more general way for you to route signals from
one point in a model to another. The Vector mode takes as input a vector of signals of the
same data type and creates a contiguous output signal. Depending on the input, this block
outputs a row or column vector if any of the inputs are row or column vectors, respectively.

d Sink blocks display, write, or save model output. To see the results of the simulation, you
must use a Sink block.


matlab:aerolib

Create Aerospace Models

Configure the blocks. Most blocks feature configuration options that let you customize block
functionality to specific simulation parameters. For example, the ISA Atmosphere Model block
provides configuration options for setting the height of the troposphere, tropopause, and air
density at sea level.

Connect the blocks. To create signal pathways between blocks, you connect the blocks to each
other. You can do this manually by clicking and dragging, or you can connect blocks
automatically.

Encapsulate subsystems. Systems made with Aerospace Blockset blocks can function as
subsystems of larger, more complex models, like subsystems in any Simulink model.

2-3
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Build a Simple Actuator System

2-4

In this section...

“Build the Model” on page 2-4

“Run the Simulation” on page 2-7

Build the Model

The Simulink product is a software environment for modeling, simulating, and analyzing dynamic
systems. Try building a simple model that drives an actuator with a sine wave and displays the
actuator's position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of building it, enter
aeroblktutorial at the MATLAB command line.

|

The following section (“Create a Model” on page 2-4) explains how to build a model on Windows®
platforms. You can use this same procedure to build a model on Linux® platforms.

The section describes how to build the model. It does not describe how to set the configuration
parameters for the model. See “Set Model Configuration Parameters for a Model”. That topic
describes the Configuration Parameters dialog box for models. If you do not set any configuration
parameters, simulating models might cause warnings like:

Warning: Using a default value of 0.2 for maximum step size.
The simulation step size will be equal to or less than this
value. You can disable this diagnostic by setting
"Automatic solver parameter selection' diagnostic to 'none'
in the Diagnostics page of the configuration parameters
dialog

Create a Model
To create a new blank model and open the Simulink library browser:

1 Onthe MATLAB Home tab, click Simulink. In the Simulink start page, click the Blank Model
template, and then click Create Model.
To open the Library Browser, click the browser button.

Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink Sources library.
b  Drag the Sine Wave block from the Sources library into the new model window.
4 Add a Linear Second-Order Actuator block to the model.

Click the [* symbol next to Aerospace Blockset in the Library Browser to expand the
hierarchical list of the aerospace blocks.


matlab:aeroblktutorial

Build a Simple Actuator System

b In the expanded list, click Actuators to view the blocks in the Actuator library.
¢ Drag the Linear Second-Order Actuator block into the model window.
Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the Simulink Signals &
Systems library.

b  Drag the Mux block from the Signal Routing library into the model window.
Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink Sinks library.
b  Drag the Scope block from the Sinks library into the model window.
Resize the Mux block in the model.

a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to change the size of the
block.

Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold down the mouse
button and drag the line that appears until it touches the input port of the Linear Second-
Order Actuator block. Release the mouse button.

b  Using the same technique, connect the output of the Linear Second-Order Actuator block to
the second input port of the Mux block.

¢ Using the same technique, connect the output of the Mux block to the input port of the
Scope block.

d  Position the pointer near the first input port of the Mux block. Hold down the mouse button
and drag the line that appears over the line from the output port of the Sine Wave block until
double crosshairs appear. Release the mouse button. The lines are connected when a knot is
present at their intersection.

Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you to set the block's
parameters.

For this example, configure the block to generate a 10 rad/s sine wave by entering 10 for the
Frequency parameter. The sinusoid has the default amplitude of 1 and phase of 0 specified
by the Amplitude and Phase offset parameters.

b  Click OK.
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¢ Double-click the Linear Second-Order Actuator block.

In this example, the actuator has the default natural frequency of 150 rad/s, a damping ratio
of 0.7, and an initial position of 0 radians specified by the Natural frequency, Damping
ratio, and Initial position parameters.

d Click OK.

Block Parameters: Linear Second-Order Actuator *
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Build a Simple Actuator System

Run the Simulation

You can now run the model that you built to see how the system behaves in time:
1  Double-click the Scope block if the Scope window is not already open on your screen. The Scope
window appears.

2 Select Run from the Simulation menu in the model window. The signal containing the 10 rad/s
sinusoid and the signal containing the actuator position are plotted on the scope.

3 Adjust the Scope block's display. While the simulation is running, right-click the y-axis of the
scope and select Autoscale. The vertical range of the scope is adjusted to better fit the signal.

4  Vary the Sine Wave block parameters.
a  While the simulation is running, double-click the Sine Wave block to open its parameter
dialog box.

b  You can then change the frequency of the sinusoid. Try entering 1 or 20 in the Frequency
field. Close the Sine Wave dialog box to enter your change. You can then observe the
changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is usually the case for
parameters that directly or indirectly alter a signal's dimensions or sample rate. However, there are
some parameters, like the Sine Wave Frequency parameter, that you can tune without stopping the
simulation.

Run a Simulation from a Script

You can also modify and run a Simulink simulation from a script. By doing this, you can automate the
variation of model parameters to explore a large number of simulation conditions rapidly and
efficiently. For information on how to do this, see “Run Simulations Programmatically”.

See Also
Linear Second-Order Actuator

Related Examples
. “Run Simulations Programmatically”
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In this section...

“Fundamental Coordinate System Concepts” on page 2-8
“Coordinate Systems for Modeling” on page 2-9

“Body Coordinates” on page 2-9

“Wind Coordinates” on page 2-10

“Coordinate Systems for Navigation” on page 2-11

“Coordinate Systems for Display” on page 2-13

Fundamental Coordinate System Concepts

Coordinate systems allow you to keep track of an aircraft or spacecraft position and orientation in
space. The Aerospace Blockset coordinate systems are based on these underlying concepts from
geodesy, astronomy, and physics.

Definitions

The blockset uses right-handed (RH) Cartesian coordinate systems. The right-hand rule establishes
the x-y-z sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. In an inertial frame, Newton's second
law holds: force = mass x acceleration. Loosely speaking, acceleration is defined with respect to the
distant cosmos, and an inertial frame is often said to be nonaccelerated with respect to the fixed
stars. Because the Earth and stars move so slowly with respect to one another, this assumption is a
very accurate approximation.

Strictly defined, an inertial frame is a member of the set of all frames not accelerating relative to one
another. A noninertial frame is any frame accelerating relative to an inertial frame. Its acceleration,
in general, includes both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The blockset models the Earth shape (the geoid) as an oblate spheroid, a special type of ellipsoid with
two longer axes equal (defining the equatorial plane) and a third, slightly shorter (geopolar) axis of
symmetry. The equator is the intersection of the equatorial plane and the Earth surface. The
geographic poles are the intersection of the Earth surface and the geopolar axis. In general, the
Earth geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The zero longitude or prime
meridian passes through Greenwich, England.

Approximations

The blockset makes three standard approximations in defining coordinate systems relative to the
Earth.

* The Earth surface or geoid is an oblate spheroid, defined by its longer equatorial and shorter
geopolar axes. In reality, the Earth is slightly deformed with respect to the standard geoid.

* The Earth rotation axis and equatorial plane are perpendicular, so that the rotation and geopolar
axes are identical. In reality, these axes are slightly misaligned, and the equatorial plane wobbles
as the Earth rotates. This effect is negligible in most applications.
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* The only noninertial effect in Earth-fixed coordinates is due to the Earth rotation about its axis.
This is a rotating, geocentric system. The blockset ignores the Earth acceleration around the Sun,
the Sun acceleration in the Galaxy, and the Galaxy acceleration through the cosmos. In most
applications, only the Earth rotation matters.

This approximation must be changed for spacecraft sent into deep space, such as outside the
Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets

The blockset uses the standard WGS-84 geoid to model the Earth. You can change the equatorial axis
length, the flattening, and the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body that is well

approximated by an oblate spheroid by changing the spheroid size, flattening, and rotation rate. If the
celestial body is rotating westward (retrogradely), make the rotation rate negative.

Coordinate Systems for Modeling

Modeling aircraft and spacecraft is simplest if you use a coordinate system fixed in the body itself. In
the case of aircraft, the forward direction is modified by the presence of wind, and the craft motion
through the air is not the same as its motion relative to the ground.

See “Equations of Motion” for further details on how the blockset implements body and wind
coordinates.

Body Coordinates

The noninertial body coordinate system is fixed in both origin and orientation to the moving craft. The
craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

* The x-axis points through the nose of the craft.

* The y-axis points to the right of the x-axis (facing in the pilot's direction of view), perpendicular to
the x-axis.

» The z-axis points down through the bottom the craft, perpendicular to the xy plane and satisfying
the RH rule.

Translational Degrees of Freedom
Translations are defined by moving along these axes by distances x, y, and z from the origin.
Rotational Degrees of Freedom

Rotations are defined by the Euler angles P, Q, R or ®, ©, W. They are:

Por® Roll about the x-axis
Qor® Pitch about the y-axis
RorV¥ Yaw about the z-axis
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Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

Wind Coordinates

The noninertial wind coordinate system has its origin fixed in the rigid aircraft. The coordinate
system orientation is defined relative to the craft velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

» The x-axis points in the direction of V.

* The y-axis points to the right of the x-axis (facing in the direction of V), perpendicular to the x-
axis.

* The z-axis points perpendicular to the xy plane in whatever way needed to satisfy the RH rule with
respect to the x- and y-axes.

Translational Degrees of Freedom
Translations are defined by moving along these axes by distances x, y, and z from the origin.
Rotational Degrees of Freedom

Rotations are defined by the Euler angles @, vy, y:

() Bank angle about the x-axis
y Flight path about the y-axis
X Heading angle about the z-axis

Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.
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Coordinate Systems for Navigation

Modeling aerospace trajectories requires positioning and orienting the aircraft or spacecraft with
respect to the rotating Earth. Navigation coordinates are defined with respect to the center and
surface of the Earth.

Geocentric and Geodetic Latitudes

The geocentric latitude A on the Earth surface is defined by the angle subtended by the radius vector
from the Earth center to the surface point with the equatorial plane.

The geodetic latitude p on the Earth surface is defined by the angle subtended by the surface normal
vector n and the equatorial plane.

n
4

Equatorial
plane*
Polar
axis *Oblateness exaggerated

NED Coordinates

The north-east-down (NED) system is a noninertial system with its origin fixed at the aircraft or
spacecraft center of gravity. Its axes are oriented along the geodetic directions defined by the Earth
surface.

* The x-axis points north parallel to the geoid surface, in the polar direction.

» The y-axis points east parallel to the geoid surface, along a latitude curve.

* The z-axis points downward, toward the Earth surface, antiparallel to the surface outward normal
n.

Flying at a constant altitude means flying at a constant z above the Earth surface.
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Earth

ECI Coordinates

The Earth-centered inertial (ECI) system is non-rotating. For most applications, assume this frame to
be inertial, although the equinox and equatorial plane move very slightly over time. The ECI system is
considered to be truly inertial for high-precision orbit calculations when the equator and equinox are
defined at a particular epoch (e.g. J2000). Aerospace functions and blocks that use a particular
realization of the ECI coordinate system provide that information in their documentation. The ECI
system origin is fixed at the center of the Earth (see figure).

* The x-axis points towards the vernal equinox (First Point of Aries V).
* The y-axis points 90 degrees to the east of the x-axis in the equatorial plane.
* The z-axis points northward along the Earth rotation axis.
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Earth-Centered Coordinates
ECEF Coordinates

The Earth-center, Earth-fixed (ECEF) system is noninertial and rotates with the Earth. Its origin is
fixed at the center of the Earth (see preceding figure).

* The x’-axis points towards the intersection of Earth equatorial plane and the Greenwich Meridian.
* The y'-axis points 90 degrees to the east of the x’-axis in the equatorial plane.
* The z’-axis points northward along the Earth rotation axis.

Coordinate Systems for Display

Several display tools are available for use with the Aerospace Blockset product. Each has a specific
coordinate system for rendering motion.

MATLAB Graphics Coordinates
See the “Axes Appearance” for more information about the MATLAB Graphics coordinate axes.
MATLAB Graphics uses this default coordinate axis orientation:

* The x-axis points out of the screen.
* The y-axis points to the right.
» The z-axis points up.
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FlightGear Coordinates

FlightGear is an open-source, third-party flight simulator with an interface supported by the blockset.

* “Work with the Flight Simulator Interface” on page 2-20 discusses the blockset interface to
FlightGear.

See the FlightGear documentation at www . flightgear.org for complete information about this
flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the standard body
coordinate system about the y-axis by -180 degrees:

» The x-axis is positive toward the back of the vehicle.
* The y-axis is positive toward the right of the vehicle.

* The z-axis is positive upward, e.g., wheels typically have the lowest z values.

AC3D Coordinates

AC3D is a low-cost, widely used, geometry editor available from https://www.inivis.com/. Its
body-fixed coordinates are formed by inverting the three standard body coordinate axes:

» The x-axis is positive toward the back of the vehicle.

» The y-axis is positive upward, e.g., wheels typically have the lowest y values.
* The z-axis is positive to the left of the vehicle.

References
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See Also

External Websites

. World Geodetic System 1984 (WGS 84)
. https://www.inivis.com/

2-15


https://earth-info.nga.mil/GandG/update/index.php
https://www.inivis.com/

2 Aerospace Blockset Software

Flight Simulator Interface

2-16

In this section...

“About the FlightGear Interface” on page 2-16

“Supported FlightGear Versions” on page 2-16

“Obtain FlightGear” on page 2-16

“Configure Your Computer for FlightGear” on page 2-16
“FlightGear and Video Cards in Windows Systems” on page 2-17
“Install and Start FlightGear” on page 2-17

“Install Additional FlightGear Scenery” on page 2-18

About the FlightGear Interface

The Aerospace Blockset product supports an interface to the third-party FlightGear flight simulator,
open-source software available through a GNU General Public License (GPL). The FlightGear flight
simulator interface included with the blockset is a unidirectional transmission link from the Simulink
interface to FlightGear using the FlightGear published net fdm binary data exchange protocol. Data
is transmitted via UDP network packets to a running instance of FlightGear. The blockset supports
multiple standard binary distributions of FlightGear. See “Run FlightGear with Simulink Models” on
page 2-24 for interface details.

FlightGear is a separate software entity not created, owned, or maintained by MathWorks.

* To report bugs in or request enhancements to the Aerospace Blockset FlightGear interface, use
the form.

» To report bugs or request enhancements to FlightGear itself, visit FlightGear website.

Supported FlightGear Versions
The Aerospace Toolbox product supports FlightGear versions starting from v2.6.

If you are using a FlightGear version older than 2.6, update your FlightGear installation to a
supported version. When you open the model, the software returns a warning or error. Obtain
updated FlightGear software from https://www. flightgear.org in the download area.

Obtain FlightGear

You can obtain FlightGear from the FlightGear website in the download area or by ordering CDs from
FlightGear. The download area contains extensive documentation for installation and configuration.
Because FlightGear is an open-source project, source downloads are also available for customizing
and porting to custom environments.

Configure Your Computer for FlightGear

To use FlightGear, you must have a high-performance graphics card with stable drivers For more
information, see the FlightGear CD distribution or the hardware requirements and documentation
areas of the FlightGear website.
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FlightGear performance and stability can be sensitive to computer video cards, driver versions, and
driver settings. You need OpenGL® support with hardware acceleration activated. Without proper
setup, performance can drop from about a 30 frames-per-second (fps) update rate to less than 1 fps.
If your system allows you to update OpenGL settings, modify them to improve performance.

Graphics Recommendations for Windows
For Windows systems, use the following graphics recommendations:

* A graphics card with acceptable OpenGL performance (as outlined at the FlightGear website).

* The latest tested and stable driver release for your video card. Test the driver thoroughly on a few
computers before deploying to others.

For more information, see FlightGear Hardware Recommendations.
Setup on Linux, Macintosh, and Other Platforms

FlightGear distributions are available for Linux, Macintosh, and other platforms from the FlightGear
website, https://www. flightgear.org. Installation on these platforms, like Windows, requires
careful configuration of graphics cards and drivers. Consult the documentation and hardware
requirements sections at the FlightGear website.

FlightGear and Video Cards in Windows Systems

Your computer built-in video card, such as NVIDIA® cards, can conflict with FlightGear shaders.
Consider this workaround:

* Disable the FlightGear shaders by selecting the Generate Run Script block Disable FlightGear
shader options check box.

Install and Start FlightGear

The extensive FlightGear documentation guides you through the installation in detail. Consult the
following:

* Documentation section of the FlightGear website for installation instructions: https://
www . flightgear.org.

* Hardware recommendations section of the FlightGear website.

* MATLAB system requirements.

Keep the following points in mind:

» Configure your computer graphics card before you install FlightGear. See the preceding section,
“Configure Your Computer for FlightGear” on page 2-16.

* Shut down all running applications (including the MATLAB interface) before installing FlightGear.

+ Install FlightGear in a folder path name composed of ASCII characters.

* MathWorks tests indicate that the operational stability of FlightGear is especially sensitive during
startup. It is best not to move, resize, mouse over, overlap, or cover up the FlightGear window
until the initial simulation scene appears after the startup splash screen fades out.

Aerospace Blockset supports FlightGear on several platforms. This table lists the properties to
consider before you start to use FlightGear.
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FlightGear Property Folder Description Platforms Typical Location
FlightGearBase- FlightGear installation |Windows 64-bit |C:\Program Files\FlightGear
Directory folder. (default)
Linux Folder into which you installed
FlightGear
Mac /Applications
(folder to which you dragged the
FlightGear icon)
GeometryModelName Model geometry folder |Windows 64-bit |C:\Program Files\FlightGear\-
data\Aircraft\HL20
(default)
Linux $FlightGearBaseDirectory/data/
Aircraft/HL20
Mac $FlightGearBaseDirectory/ -

FlightGear.app/Contents/-
Resources/data/Aircraft/HL20
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Install Additional FlightGear Scenery

When you install the FlightGear software, the installation provides a basic level of scenery files. The
FlightGear documentation guides you through installing scenery as part the general FlightGear
installation.

If you need to install more FlightGear scenery files, see the instructions at https://
www . flightgear.org. The instructions describe how to install the additional scenery in a default
location. MathWorks® recommends that you follow those instructions.

If you install additional scenery in a nonstandard location, you may need to update the FG_SCENERY
environment variable in the script output from the Generate Run Script block to include the new
path. For a description of the FG_SCENERY variable, see the documentation at https://
www.flightgear.org.

If you do not download scenery in advance, you can direct FlightGear to download it automatically
during simulation by selecting the Generate Run Script block Install FlightGear scenery during
simulation (requires Internet connection) check box.

For Windows systems, you may encounter an error message while launching FlightGear with the
InstallScenery option enabled:

Error creating directory: No such file or directory

This error likely indicates that your default FlightGear download folder is not writeable, the path
cannot be resolved, or the path contains UNC path names. To work around the issue, edit the
runfg.bat file to specify a new folder path to store the scenery data:

1 Edit runfg.bat.

2 To the list of command options, append - -download-dir= and specify a folder to which to
download the scenery data. For example:

--download-dir=C:\Users\userl\Documents\FlightGear
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All data downloaded during this FlightGear session is saved to the specified directory. To avoid
downloading duplicate scenery data, use the same directory in succeeding FlightGear sessions

3 To open FlightGear, run runfg.bat.

Note Each time that you run the Generate Run Script block, it creates a new script. It overwrites any
edits that you have added.

See Also

FlightGear Preconfigured 6DoF Animation | Generate Run Script | Pack net fdm Packet for
FlightGear | Receive net_ctrl Packet from FlightGear | Send net fdm Packet to FlightGear | Unpack
net ctrl Packet from FlightGear

Related Examples
. “Work with the Flight Simulator Interface” on page 2-20

External Websites
. https://www.flightgear.org
. Hardware recommendations section of the FlightGear website
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In this section...

“Introduction” on page 2-20

“About Aircraft Geometry Models” on page 2-20

“Work with Aircraft Geometry Models” on page 2-22
“Run FlightGear with Simulink Models” on page 2-24
“Run the HL-20 Example with FlightGear” on page 2-28
“Send and Receive Data” on page 2-30

Introduction

Use this section to learn how to use the FlightGear flight simulator and the Aerospace Blockset
software to visualize your Simulink aircraft models. If you have not yet installed FlightGear, see
“Flight Simulator Interface” on page 2-16 first.

< L e

Simulink Driven HL-20 Model in a Landing Flare at KSFC

About Aircraft Geometry Models

Before you can visualize your aircraft dynamics, you need to create or obtain an aircraft model file
compatible with FlightGear. This section explains how to do this.

Aircraft Geometry Editors and Formats
You have a competitive choice of over twelve 3-D geometry file formats supported by FlightGear.

Currently, the most popular 3-D geometry file format is the AC3D format, which has the suffix *.ac.
AC3D is a low-cost geometry editor available from www.ac3d.org.
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Aircraft Model Structure and Requirements

Aircraft models are contained in the FlightGearRoot/data/Aircraft/ folder and subfolders. A
complete aircraft model must contain a folder linked through the required file named model -
set.xml.

All other model elements are optional. This is a partial list of the optional elements you can put in an
aircraft data folder:

* Vehicle objects and their shapes and colors

* Vehicle objects' surface bitmaps

* Variable geometry descriptions

* Cockpit instrument 3-D models

* Vehicle sounds to tie to events (e.g., engine, gear, wind noise)

+ Flight dynamics model

* Simulator views

* Submodels (independently movable items) associated with the vehicle

Model behavior reverts to defaults when these elements are not used. For example,

* Default sound: no vehicle-related sounds are emitted.
* Default instrument panel: no instruments are shown.

Models can contain some, all, or even none of the above elements. If you always run FlightGear from
the cockpit view, the aircraft geometry is often secondary to the instrument geometries.

A how-to document for including optional elements is included in the FlightGear documentation at:

https://wiki.flightgear.org/Howto:3D Aircraft Models
Required Flight Dynamics Model Specification

The flight dynamics model (FDM) specification is a required element for an aircraft model. To set the
Simulink software as the source of the flight dynamics model data stream for a given geometry
model, you put this line in data/Aircraft/model/model-set.xml:

<flight-model>network</flight-model>
Obtain and Modify Existing Aircraft Models

You can quickly build models from scratch by referencing instruments, sounds, and other optional
elements from existing FlightGear models. Such models provide examples of geometry, dynamics,
instruments, views, and sounds. It is simple to copy an aircraft folder to a new name, rename the
model-set.xml file, modify it for network flight dynamics, and then run FlightGear with the —
aircraft flag set to the name in model-set.xml.

Many existing 3-D aircraft geometry models are available for use with FlightGear. Visit the download
area of https://www.flightgear.org to see some of the aircraft models available. Additional models can
be obtained via Web search. Search key words such as “flight gear aircraft model” are a good starting
point. Be sure to comply with copyrights when distributing these files.
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Hardware Requirements for Aircraft Geometry Rendering

When creating your own geometry files, keep in mind that your graphics card can efficiently render a
limited number of surfaces. Some cards can efficiently render fewer than 1000 surfaces with bitmaps
and specular reflections at the nominal rate of 30 frames per second. Other cards can easily render
on the order of 10,000 surfaces.

If your performance slows while using a particular geometry, gauge the effect of geometric
complexity on graphics performance by varying the number of aircraft model surfaces. An easy way
to check this is to replace the full aircraft geometry file with a simple shape, such as a single triangle,
then test FlightGear with this simpler geometry. If a geometry file is too complex for smooth display,
use a 3-D geometry editor to simplify your model by reducing the number of surfaces in the geometry.

Work with Aircraft Geometry Models

Once you have obtained, modified, or created an aircraft data file, you need to put it in the correct
folder for FlightGear to access it.

Import Aircraft Models into FlightGear

To install a compatible model into FlightGear, use one of the following procedures. Choose the one
appropriate for your platform. This section assumes that you have read “Install and Start FlightGear”
on page 2-17.

If your platform is Windows:

1  Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder:
\FlightGear\data\Aircraft\.
Make a subfolder model\ here for your aircraft data.
Put model-set.xml in that subfolder, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files (\model\),
instruments (\instruments\), and sounds (\sounds\).

If your platform is Linux:

1  Go to your installed FlightGear directory. Open the data directory, then the Aircraft directory:
$FlightGearBaseDirectory/data/Aircraft/.
Make a subdirectory model/ here for your aircraft data.
Put model-set.xml in that subdirectory, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files (/model/),
instruments (/instruments/), and sounds (/sounds/).

If your platform is Mac:

Open a terminal.
Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder:
$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/
3 Make a subfolder model/ here for your aircraft data.
Put model-set.xml in that subfolder, plus any other files needed.
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It is common practice to make subdirectories for the vehicle geometry files (/model/),
instruments (/instruments/), and sounds (/sounds/).

Example: Animate Vehicle Geometries

This example illustrates how to prepare hinge line definitions for animated elements such as vehicle
control surfaces and landing gear. To enable animation, each element must be a named entity in a
geometry file. The resulting code forms part of the HL20 lifting body model presented in “Run the
HL-20 Example with FlightGear” on page 2-28.

1

The standard body coordinates used in FlightGear geometry models form a right-handed system,
rotated from the standard body coordinate system in Y by -180 degrees:

* X = positive toward the back of the vehicle

* Y = positive toward the right of the vehicle

* Z = positive is up, e.g., wheels typically have the lowest Z values.

See “About Aerospace Coordinate Systems” on page 2-8 for more details.

Find two points that lie on the desired named-object hinge line in body coordinates and write
them down as XYZ triplets or put them into a MATLAB calculation like this:

a=[2.98, 1.89, 0.53];

b =1[3.54, 2.75, 1.46];

Calculate the difference between the points:
pdiff = b - a

pdiff =

0.5600 0.8600 0.9300
The hinge point is either of the points in step 2 (or the midpoint as shown here):

mid = a + pdiff/2
mid =

3.2600 2.3200 0.9950
Put the hinge point into the animation scope in model-set.xml:

<center>
<X-m>3.26</X-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>
</center>

Use the difference from step 3 to define the relative motion vector in the animation axis:

<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>
</axis>

Put these steps together to obtain the complete hinge line animation used in the HL20 example
model:

<animation>
<type>rotate</type>
<object-name>RightAileron</object-name>
<property>/surface-positions/right-aileron-pos-norm</property>
<factor>30</factor>
<offset-deg>0</offset-deg>
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<center>
<X-m>3.26</x-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>

</center>

<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>

</axis>

</animation>

Run FlightGear with Simulink Models

To run a Simulink model of your aircraft and simultaneously animate it in FlightGear with an aircraft
data file model-set.xml, you need to configure the aircraft data file and modify your Simulink
model with some new blocks.

These are the main steps to connecting and using FlightGear with the Simulink software:
* “Set the Flight Dynamics Model to Network in the Aircraft Data File” on page 2-24 explains how

to create the network connection you need.

* “Obtain the Destination IP Address” on page 2-24 starts by determining the IP address of the
computer running FlightGear.

* “Send Simulink Data to FlightGear” on page 2-30 shows how to add and connect interface and
pace blocks to your Simulink model.

* “Create a FlightGear Run Script” on page 2-25 shows how to write a FlightGear run script
compatible with your Simulink model.

+ “Start FlightGear” on page 2-26 guides you through the final steps to making the Simulink
software work with FlightGear.

* “Improve Performance” on page 2-27 helps you speed your model up.

* “Run FlightGear and Simulink Software on Different Computers” on page 2-28 explains how to
connect a simulation from the Simulink software running on one computer to FlightGear running
on another computer.

Set the Flight Dynamics Model to Network in the Aircraft Data File
Be sure to:

* Remove any pre-existing flight dynamics model (FDM) data from the aircraft data file.
* Indicate in the aircraft data file that its FDM is streaming from the network by adding this line:

<flight-model>network</flight-model>
Obtain the Destination IP Address
You need the destination IP address for your Simulink model to stream its flight data to FlightGear.

* Ifyou know your computer name, enter at the MATLAB command line:

java.net.InetAddress.getByName( 'www.mathworks.com")

» Ifyou are running FlightGear and the Simulink software on the same computer, get your computer
name by entering at the MATLAB command line:

java.net.InetAddress.getLocalHost
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» Ifyou are working in Windows, get your computer IP address by entering at the DOS prompt:
ipconfig /all
Examine the IP address entry in the resulting output. There is one entry per Ethernet device.
Create a FlightGear Run Script

To start FlightGear with the desired initial conditions (location, date, time, weather, operating
modes), it is best to create a run script by “Use the Generate Run Script Block” on page 2-25 or
“Use the Interface Provided with FlightGear” on page 2-26.

If you make separate run scripts for each model you intend to link to FlightGear and place them in
separate directories, run the appropriate script from the MATLAB interface just before starting your
Simulink model.

Use the Generate Run Script Block

The easiest way to create a run script is by using the Generate Run Script block. Use the following
procedure:

1  Open the Flight Simulator Interfaces sublibrary.

2 (Create a new Simulink model or open an existing model.

3 Drag a Generate Run Script block into the Simulink diagram.

4

Double-click the Generate Run Script block. Its dialog opens. Observe the three panes,
FlightGear, Network, and File.

Block Parameters: Generate Run Script =

| \{, Enter Search String

FlightGear ~ Network  File
FlightGear geometry model name:

[HL20

Airport ID:

[ksFo |

Runway ID:
[10 |

Initial altitude (ft)*:
[7224 [

Initial heading (deg)*:
[113 [

Offset distance (miles)*:

[4.72 [

Offset azimuth (deg)*:
lo [B

[ nstall FlightGear scenery during simulation (requires Internet connection)
[ Disable FlightGear shader options

v
< >

\) Cancel Help Apply
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5 Inthe Output file name parameter of the File tab, type the name of the output file. This name
should be the name of the command you want to use to start FlightGear with these initial
parameters. Use the appropriate file extension:

Platform Extension
Windows .bat
Linux and macOS .sh

For example, if your file name is runfg.bat, use the runfg command to execute the run script
and start FlightGear.

6 In the FlightGear base directory parameter of the File tab, specify the name of your
FlightGear installation folder.

7 In the FlightGear geometry model name parameter of the File tab, specify the name of the
subfolder, in the FlightGear/data/Aircraft folder, containing the desired model geometry.

Specify the initial conditions as needed.
Click the Generate Script button at the top of the Parameters area.

The Aerospace Blockset software generates the run script, and saves it in your MATLAB working
folder under the file name that you specified in the File > Output file name field.

10 Select or clear these check boxes and

» To direct FlightGear to automatically install required scenery while the simulator is running
— Select Install FlightGear scenery during simulation (requires Internet connection).
For Windows systems, you may encounter an error message while launching FlightGear with
this option enabled. For more information, see “Install Additional FlightGear Scenery” on
page 2-18.

* To disable FlightGear shader options — Select Disable FlightGear shader options.
11 Repeat steps 5 through 10 to generate other run scripts, if needed.

12 (Click OK to close the dialog box. You do not need to save the Generate Run Script block with the
Simulink model.

The Generate Run Script block saves the run script as a text file in your working folder. This is an
example of the contents of a run script file:
>> cd C:\Applications\FlightGear-<your_ FlightGear version>
>> SET FG _ROOT=C:\Applications\FlightGear-<your FlightGear version>\data
>> cd \bin\
>> fgfs --aircraft=HL20 --fdm=network,localhost,5501,5502,5503
--fog-fastest --disable-clouds --start-date-1at=2004:06:01:09:00:00

--disable-sound --in-air --enable-freeze --airport=KSFO --runway=10L
--altitude=7224 --heading=113 --offset-distance=4.72 --offset-azimuth=0

Use the Interface Provided with FlightGear

The FlightGear launcher GUI (part of FlightGear, not the Aerospace Blockset product) lets you build
simple and advanced options into a visible FlightGear run command.

Start FlightGear

If your computer has enough computational power to run both the Simulink software and FlightGear
at the same time, a simple way to start FlightGear on a Windows system is to create a MATLAB
desktop button containing the following command to execute a run script like the one created above:
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system('runfg &")

To create a desktop button:

1

In the MATLAB Command Window, select Shortcuts and click New Shortcut. The Shortcut
Editor dialog opens.

Set the Label, Callback, Category, and Icon fields as shown in the following figure.

4\ Shortcut Editor =l o=

Label: FlightGear

Callback: |dos ('runfg &');

4

Category: |Shortcuts
Icon: |&| Standard icon - D

Add to quick access toolbar

Show label on quick access toolbar

| Save || Cancel || Help |

Click Save.

The FlightGear button appears in your MATLAB desktop. If you click it, the output file, for
example runfg.bat, runs in the current folder.

Once you have completed the setup, start FlightGear and run your model:

1

4

Make sure your model is in a writable folder. Open the model, and update the diagram. This step
ensures that any referenced block code is compiled and that the block diagram is compiled
before running. Once you start FlightGear, it uses all available processor power while it is
running.

Click the FlightGear button or run the FlightGear run script manually.

When FlightGear starts, it displays the initial view at the initial coordinates specified in the run
script. If you are running the Simulink software and FlightGear on different computers, arrange
to view the two displays at the same time.

Now begin the simulation and view the animation in FlightGear.

Improve Performance

If your Simulink model is complex and cannot run at the aggregate rate needed for the visualization,
you might need to

Use the Accelerator mode in Simulink (“Perform Acceleration”.)

Free up processor power by running the Simulink model on one computer and FlightGear on
another computer. Use the Destination IP Address parameter of the Send net fdm Packet to
FlightGear block to specify the network address of the computer where FlightGear is running.

Simulate the Simulink model first, then save the resulting translations (x-axis, y-axis, z-axis) and
positions (latitude, longitude, altitude), and use the FlightGear Animation object in Aerospace
Toolbox to visualize this data.
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Tip If FlightGear uses more computer resources than you want, you can change its scheduling
priority to a lesser one. For example, see commands like Windows start and Linux nice or their
equivalents.

Run FlightGear and Simulink Software on Different Computers

It is possible to simulate an aerospace system in the Simulink environment on one computer (the
source) and use its simulation output to animate FlightGear on another computer (the target). The
steps are similar to those already explained, with certain modifications.

1 Obtain the IP address of the computer running FlightGear. See “Obtain the Destination IP
Address” on page 2-24.

2  Enter this target computer IP address in the Send net fdm Packet to FlightGear block. See “Send
Simulink Data to FlightGear” on page 2-30.

3 Update the Generate Run Script block in your model with the target computer FlightGear base
folder. Regenerate the run script to reflect the target computer separate identity.

See “Create a FlightGear Run Script” on page 2-25.

4 Copy the generated run script to the target computer. Start FlightGear there. See “Start
FlightGear” on page 2-26.

5 Ifyou want to also receive data from FlightGear, use the Receive net_ctrl Packet from FlightGear
block. Enter the IP address of the computer running FlightGear in the Origin IP address
parameter.

6 Update the run script for the receive data. Use the Generate Run Script block to regenerate the
run script.

7  Start your Simulink model on the source computer. FlightGear running on the target displays the
simulation motion.

Run the HL-20 Example with FlightGear

The Aerospace Blockset software contains an example model of the HL-20 lifting body that uses the
FlightGear interface and projects. This example illustrates many features of the Aerospace Blockset
software. It also contains a Variant Subsystem block that you can use to specify the data source for
the simulation. You might want to use the Variant Subsystem block to change the terrain data source
or if you do not want to use FlightGear but still want to simulate the model.

To install and configure FlightGear before attempting to simulate this model, see “Flight Simulator
Interface” on page 2-16. Also, before attempting to simulate this model, read “Install and Start
FlightGear” on page 2-17.

Note Step 2 of this example copies the preconfigured geometries for the HL-20 simulation from
projectroot\support to FlightGear\data\Aircraft\. It requires that you have system
administrator privileges for your machine. If you do not have these privileges, manually copy these
files, depending on your platform.

Windows

Copy the HL20 folder from projectroot\support folder to FlightGear\data\Aircraft\
folder. This folder contains the preconfigured geometries for the HL-20 simulation and HL20 -
set.xml. The file projectroot\support\HL20\Models\HL20.xml defines the geometry.
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For Windows platforms, start the MATLAB app with administrator privileges. For example, in the
Start menu, right click the MATLAB app, then select Run as administrator.

For more information, see “Import Aircraft Models into FlightGear” on page 2-22.

Linux
Copy the HL20 directory from projectroot/support directory to
$FlightGearBaseDirectory/data/Aircraft/ directory. This directory contains the

preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file projectroot/
support/HL20/Models/HL20.xml defines the geometry.

For more about this step, see “Import Aircraft Models into FlightGear” on page 2-22.

Mac
Copy the HL20 folder from projectroot/support folder to $FlightGearBaseDirectory/
FlightGear.app/Contents/Resources/data/Aircraft/ folder. This folder contains the

preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file projectroot/
support/HL20/Models/HL20.xml defines the geometry.

For more about this step, see “Import Aircraft Models into FlightGear” on page 2-22.

1  Start the MATLAB interface. Open the example either by entering asbh120 in the MATLAB
Command Window or by finding the example entry (HL-20 with FlightGear Interface) in the
Aerospace Blockset Examples page. The project for the model starts and the model opens.

airframe_cala

»
fl Siame_daim

FlightGear Redundant controller setings
Install FlightGear Stateflow Chart in Model

Previously saved data
airframe data

FG_data o

anv_data

Viewer and Faedback
Actustor System Failures

How to run the HL20 model:

HL-20 Example, See the Aeraspace Blockset User's Guide for instructions to set up FlightGear or click on the

version 2.0.425 “FlightGear” black and follow the instructions.
rodynamic moded from
c

refiminary erodynamic Note: If FlightGear is not installed, double-click the "Viewer and Feedback” block and select an option
Modsl for Simuiation Studies of th "Previously Saved Data” (for saved data from a previous simulation with FlightGear in the loap). "Signal
HL 20 Lifiing Body”, Editar” (for an existing and editable signal), "Constants” (for a set of constant values), or "Spreadsheet Data”

dy”,
NASA TM4302, August 1092, {for data saved in a spreadshest from a previous simulation with FlightGear in the loop).

2 Ifthis is your first time running FlightGear for this model, you need to create and run a
customized FlightGear run script. You can do this with one of the following:

* In the model, double-click the Install FlightGear block and follow the steps in the block.
Initially, this block is red. As you follow the steps outlined in the block, the block mask
changes.

To start FlightGear for the model, click Launch HL20 in FlightGear.

3 Now start the simulation and view the animation in FlightGear.
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Note With the FlightGear window in focus, press the V key to alternate between the different
aircraft views: cockpit view, helicopter view, chase view, and so on.

Send and Receive Data
You can send and receive data between a Simulink model and a running FlightGear Flight Simulator.
Send Simulink Data to FlightGear

The easiest way to connect your model to FlightGear with the blockset is to use the FlightGear
Preconfigured 6DoF Animation block:

Flight Simulator Interfaces

b
Au
Jn
Aupheey k >q} net_fdm | net_fdm FG
Je il
> w Send Generate
- net_fdm Packet Run Script
ALTLTD Pack to FlightGear
Erpooninred net_fdm Packet
LA T for FlightGear
wind_spaed_kt 4
wind_dir_deg [
turbulence_nom pr
¢ temp_cfp
net_ctrl —® net_ctrl press_inhg
hground pr
Receive net_cir magvar >
Packet from FlightGear iicing pr
Unpack
net_cirl Packet
from FlightGear

The FlightGear Preconfigured 6DoF Animation block is a subsystem containing the Pack net fdm
Packet for FlightGear and Send net fdm Packet to FlightGear blocks:

Flight Simulator Interfaces

o

r
A
b
Au
An GEN
Auhesw * Sq} nat_fdm nat_fdm i
Ae )
) M Send Generate
FlightGe, net_fdm Packet Run Script
e N T e to FlightGear
g net_fdm Packet
B0oF Animation for FlightGear
wind_speed_kt pr
wind_dir_deg [}
turbadence_nom pr
, temp_cf}
net_ctrl —— net_ctrl press_inhg b
hground >
Receive net_ctrl magvar pr
Packet from FlightGear icing pr
Unpack
net_cirl Packet
from FlightGear

These blocks transmit data from a model to a FlightGear session. The blocks are separate for
maximum flexibility and compatibility.

* The Pack net fdm Packet for FlightGear block formats a binary structure compatible with
FlightGear from model inputs. In the default configuration, the block displays only the 6DoF ports,
but you can configure the full FlightGear interface supporting more than 50 distinct signals from
the block dialog box:
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* The Send net fdm Packet to FlightGear block transmits this packet via UDP to the specified IP
address and port where a FlightGear session awaits an incoming datastream. Use the IP address
you found in “Obtain the Destination IP Address” on page 2-24.

» The Simulation Pace block slows the simulation so that its aggregate run rate is 1 second of
simulation time per second of clock time. You can also use it to specify other ratios of simulation
time to clock time.

Send FlightGear Data to Model

To increase the accuracy of your model simulation, you might want to send FlightGear environment
variables to the Simulink model. Use the following blocks:

Flight Simulator Interfaces

Hi
Ju
Jn
Hpheey k Yo net_fdm ] net_fdm G
b [ RUN
) 1] Send Generate
ightGe: met_fdm Packet Run Script
p,ﬂ',inﬁg;;d Pack to FlightGear "
6DoF Animation ’;‘:‘r—l’:d"';‘hf;::‘
wind_speed_kt [
wind_dir_deg [
turbulence_nom pr
" temp_c }
net_ctrl —m niet_ctrl press_inhg
hground P
Receive net_cid magvar P
Packet from FlightGear iging pr
Unpack
net_cirl Packet
from FlightGear
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* Receive net_ctrl Packet from FlightGear — Receives a network control and environment data
packet net ctrl from either the simulation of a Simulink model in the FlightGear simulator, or
from a FlightGear session.

* Unpack net_ctrl Packet from FlightGear — Unpacks net_ctrl variable packets received from
FlightGear and makes them available for the Simulink environment.

* Generate Run Script — Generates a customized FlightGear run script on the current platform.

For an example of how to use these blocks to send data to a Simulink model, see “HL-20 Project with
Optional FlightGear Interface” on page 7-37.

These blocks use UDP to transfer data from FlightGear to the Simulink environment. Note the
following:

* When a host and target are Windows or Linux platforms, you can use any combination of Windows
or Linux platforms for the host and target.

* When a host or target is a Mac platform, use only Mac platforms for both the host and target.

See Also

FlightGear Preconfigured 6DoF Animation | Generate Run Script | Pack net fdm Packet for
FlightGear | Receive net ctrl Packet from FlightGear | Send net fdm Packet to FlightGear | Unpack
net ctrl Packet from FlightGear

Related Examples
. “Flight Simulator Interface” on page 2-16

External Websites
. https://www.flightgear.org
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Unreal Engine Simulation Environment Requirements and Limitations

Unreal Engine Simulation Environment Requirements and
Limitations

Aerospace Blockset provides an interface to a simulation environment that is visualized using the
Unreal Engine from Epic Games®. This visualization engine comes installed with the toolbox. When
simulating in this environment, keep these requirements and limitations in mind.

Software Requirements

*  Windows 64-bit platform
* Visual Studio® 2019

* Microsoft® DirectX® — If this software is not already installed on your machine and you try to
simulate in the environment, the toolbox prompts you to install it. Once you install the software,
you must restart the simulation.

In you are customizing scenes, verify that your Unreal Engine project is compatible with the Unreal
Engine version supported by your MATLAB release.

MATLAB Release Unreal Engine Version
R2021b 4.25

Note Mac and Linux platforms are not supported for Unreal Engine simulation.

Minimum Hardware Requirements

* Graphics card (GPU) — Virtual reality-ready with 8 GB of on-board RAM
* Processor (CPU) — 2.60 GHz
* Memory (RAM) — 12 GB

Limitations

The Unreal Engine simulation environment blocks do not support:

* Code generation

* Model reference

* Multiple instances of the Simulation 3D Scene Configuration block
* Multiple Unreal Engine instances in the same MATLAB session

» Parallel simulations

* Rapid accelerator mode

* Multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D
block pairs, such as Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set,
specify the same Tag for actor in 3D scene, Actortag parameter.

In addition, when using these blocks in a closed-loop simulation, all Unreal Engine simulation
environment blocks must be in the same subsystem.
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See Also

More About

. “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2

External Websites

. Unreal Engine 4 Documentation
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How 3D Simulation for Aerospace Blockset Works

How 3D Simulation for Aerospace Blockset Works

The aerospace models run programmable maneuvers in a photorealistic 3D visualization
environment. Aerospace Blockset integrates the 3D simulation environment with Simulink so that you
can query the world around aerospace vehicles for virtually testing perception, control, and planning
algorithms. The Aerospace Blockset visualization environment uses the Unreal Engine by Epic
Games.

Understanding how this simulation environment works can help you troubleshoot issues and
customize your models.

Communication with 3D Simulation Environment

When you use Aerospace Blockset to run your algorithms, Simulink co-simulates the algorithms in the
visualization engine.

In the Simulink environment, Aerospace Blockset:
* Determines the next position of objects by using 3D visualization environment feedback and

aerospace vehicle dynamics models.
* Configures the 3D visualization environment, specifically:

* Ray tracing
* Scene capture cameras
+ Initial object positions
* In the visualization engine environment, Aerospace Blockset positions the objects and uses ray
tracing to query the environment.

The diagram summarizes the communication between Simulink and the visualization engine.

-
- Determine positions of ] Transfation, rotation, scale « Posifion objects in 3D
objects i environment
« Configure 3D environment J Scene information . Gluery 3D environment
Simulink Visualization
Engine

Block Execution Order

During simulation, the 3D simulation blocks follow a specific execution order:
1 The aerospace blocks initialize the vehicles and send their X, Y, and Yaw signal data to the
Simulation 3D Scene Configuration block.

2 The Simulation 3D Scene Configuration block receives the vehicle data and sends it to the sensor
blocks.

3 The sensor blocks receive the vehicle data and use it to accurately locate and visualize the
vehicles.
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The Priority property of the blocks controls this execution order. To access this property for any
block, right-click the block, select Properties, and click the General tab. By default, Simulation 3D
Aircraft blocks have a priority of -1, Simulation 3D Scene Configuration blocks have a priority of 0,
and sensor blocks have a priority of 1.

If your sensors are not detecting vehicles in the scene, it is possible that the 3D simulation blocks are
executing out of order. Try updating the execution order and simulating again. For more details on
execution order, see “Control and Display Execution Order”.

Also be sure that all 3D simulation blocks are located in the same subsystem. Even if the blocks have

the correct Priority settings, if they are located in different subsystems, they still might execute out
of order.

See Also

Related Examples

. “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-33

. “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2

. “Customize Scenes Using Simulink and Unreal Editor” on page 4-6

. “Get Started Communicating with the Unreal Engine Visualization Environment” (Vehicle

Dynamics Blockset)
. “Prepare Custom Vehicle Mesh for the Unreal Editor” (Vehicle Dynamics Blockset)
. “Place Cameras on Actors in the Unreal Editor” (Vehicle Dynamics Blockset)

External Websites
. Unreal Engine
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Projects Template for Flight Simulation Applications

Flight Simulation Applications

Use projects to help organize large flight simulation modeling projects and makes it easier to share
projects with others. This template provides a framework for the collaborative development of a flight
simulation application. You can customize this project structure for specific applications.

Note To successfully run this example, install a C/C++ compiler.

The Aerospace Blockset software supplies a projects template that you can use to create your own
flight simulation application. This template uses variant subsystems, model variants, and referenced
models to implement flight simulation application components such as:

An airframe that contains a 6DOF equation of motion environment model and actuator dynamics
An inertial measurement unit (IMU) sensor model

A visualization subsystem oriented for FlightGear

A model of the nonlinear dynamics of the airframe

A model of the linear dynamics of the airframe

Download the Flight Simulation Template

1

From the Simulink Start Page, select Flight Simulation.
In the Create Project window, in Name, enter a project name, for example FlightSimProj.

In Folder, enter a project folder or browse to the folder to contain the project, for example
FlightSimFolder.

Click OK.
If the folder does not exist, the dialog prompts you to create it. Click Yes.
The software compiles the project, populates the project folders, and opens the main model,

flightSimulation. All models and supporting files are in place for you to customize for your
flight simulation application.

Contents of the Project Template

The flight simulation project template contains the following folders

mainModels

Contains the top-level simulation model, flightSimulation.This model opens on startup. This
file contains the top-level blocks for the flight simulation environment. Simulink uses the Variant
Subsystem, Model Variants, and Model blocks at this level to adapt to the different simulation
conditions.

* The aircraft airframe can vary between a nonlinear an linear approach.

* The commands to the aircraft can vary between a Signal Editor block, a joystick or a variable
from the workspace.
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* Sensors can vary between models that include sensor dynamics or feedthrough (no associated
dynamics).

* Environment values can vary between state-dependent values (the values of temperature,
pressure and so on depend on local position, latitude, etc.) or constant values that do not
depend on state values.

* The Visualization subsystem provides hooks that let you work with the states. For example, you
can visualize the states using FlightGear or they can be recorded in a variable in the
workspace for further analysis. States can also be visualized using the Simulation Data
Inspector.

libraries
Contains the libraries used by the models.
nonlinearAirframe

Contains a model of the nonlinear dynamics of the airframe.

* A specific subsystem (AC model) that contains a placeholder for the dynamics of your aircraft
model . The characteristics of this subsystem are:

* Actuators and environment inputs. Actuators refer to generic signals that may affect the
behavior of the aircraft (for example an electric signal in voltage that will change the
position of the hydraulic actuator connected to a control surface such as an aileron).

* Forces and moments outputs. Effective in the center of gravity of the aircraft in body axis.

* A 6DOF Body Quaternion block that solves the differential equations of forces and moments to
obtain the aircraft states.

linearAirframe

Contains the linear dynamics of the airframe and the model to obtain these linear dynamics. The
example obtains these dynamics by linearizing the nonlinear model using the
trimLinearizeOpPoint function and trimNonlinearAirframe model. This function uses
“Simulink Control Design” software to perform the linearization. It performs linearization of the
nonlinear model for a given set of known inputs and conditions. For further information regarding
trim and linearization, see the Simulink Control Design™ documentation). The
trimLinearizeOpPoint function stores the output in a MAT-file.

controller

Contains the models for the Flight Control System (FCS) and its design. These models contain
referenced models for different controller architectures needed for the design of aircraft
simulation.

S1IC

Contains source code such as C code. For simulation, it also has two folders that contain S-
functions for simulation. These S-functions map buses to vectors and vice versa for the linear
airframe model. This mapping can be changed depending on the linearization scheme, and the set
of inputs and outputs for the model. To edit the indices for the different signals, you can use the S-
Function Builder block

tasks

Contains scripts to run the model. These scripts do not run continuously during the simulation
process.
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The folder also contains the non-virtual bus definitions for the states, environment, and sensor
buses. These definitions, set the signals and characteristics that different elements in the
simulation environment use. This folder also contains the definitions for the variables used in the
mask workspace for the Sensors, FlightGear, linearAirframe and nonlinearAirframe blocks. These
utilities store parameter values in data structures. For example, if the nonlinear model uses a
parameter for a Gain block, the stored variable in the structure is
Vehicle.Nonlinear.Gain.gainValue, which points to the parameter.

tests

Contains a sample test harness:

* The linearTest file contains the actual test point. This file compares a subset of the outputs
of the linearized airframe model to the outputs of the nonlinear airframe for the specific trim
condition.

* The runProjectTests file runs all the available files classified as "Tests" in the project.
utilities
Contains project-specific maintenance task utilities, such as:

* projectPaths - Lists the location of folders to be added to the MATLAB path.
* rebuildSFunction - Rebuilds S-functions for LinearInputBus and linearOutputBus.

* startVars - Defines the variables that the simulation environment requires to be in the base
workspace. This utility also controls variants using the Variants structure. This structure lets
the example switch between the nonlinear and linear airframefrom the workspace by changing
VSS VEHICLE from 1 (for the nonlinear model) to 0 (for the linear model). For more
information on subsystem variants see Model.

work

Contains files generated from every run. These files derive from source files, such as the MEX-file
that you build from S-function C code.

In Shortcuts, projects creates shortcuts for common tasks:

Initialize Variables — Runs the startVars script, which initializes the variables to the base
workspace.

Rebuild S-functions —Rebuilds the S-functions in the src folder.
Run Project Tests —Runs the test points, labeled Tests, for test files in the project.

Top Level Simulation Model — Opens the flightSimulation model. It runs on project
startup.

Template Labels

Provides file classification labels for automatic and componentization sorting. This utility adds
template labels such as Tests, Airframe Design, Flight Controller Design, and Calibration Data.

Add Airframe Dynamics and Controller Algorithm to the Project

1

2

To open the linearAirframe model, in flightSimulation double-click the Airframe
subsystem.

Double-click the Nonlinear subsystem.
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3 Inthe AC model, add your airframe dynamics.
4 Save the model.

Add Controller Algorithm to the Project

1 To openthe flightControlSystem model, in flightSimulation, double-click the FCS
subsystem.

In the Controller subsystem, add your controller algorithm.
Save the model.

Other things to try:

* Simulate your model.
* Explore the tests folder for sample tests for your application.

See Also

Related Examples
. “Create a New Project Using Templates”
. “Quadcopter Project” on page 7-60
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Flight Instrument Gauges

Use the blocks for flight instrument gauges to visualize navigation variables, such as altitude and
heading. These blocks, located in the Flight Instruments library, represent standard cockpit
instruments:

Airspeed Indicator

Altimeter

Artificial Horizon

Climb Rate Indicator

Exhaust Gas Temperature (EGT) Indicator
Heading Indicator

Revolutions Per Minute (RPM) Indicator
Turn Coordinator

See Also

Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature
(EGT) Indicator | Heading Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Related Examples

“Display Measurements with Cockpit Instruments” on page 2-42
“Programmatically Interact with Gauge Band Colors” on page 2-44
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Display Measurements with Cockpit Instruments

2-42

You can view signal data using any of the flight instrument blocks. This example uses the “HL-20 with
Flight Instrumentation Blocks” on page 7-27 model. In this example, connect a gauge so that you
can view the aircraft heading.

N =

To open the model, at the MATLAB command window, enter aeroblk HL20 Gauges.
Open the Visualization subsystem.

There is an existing Airspeed Indicator block in the model.

S U AW

Add a second Airspeed Indicator block from the Flight Instruments library to the subsystem.
Open the new Airspeed Indicator block.

Select the Extract Flight Instruments block.

In the new Airspeed Indicator block, observe that the block connection table is filled with signals

from the Extract Flight Instruments block that you can observe.

Block Parameters: Airspeed Indicator

*

| \{, Enter Search S

String

hohohohohoh o

Airspeed Indicator

Extract Fligh
Extract Fligh

Extract Fligh
Extract Fligh

Extract Flight Instruments:3

Display aircraft airspeed in knots.

t Instruments:1

t Instruments:2

t Instruments:4
t Instruments:5

Extract Flight Instruments:6

Model o/p bus:1

Minimum: |40

Maximum: |400

Scale Colors:

0

100
360
380

Label: | Top

J

120
360
380
450

Help Apply

Select the option button next to Extract Gauges:2 in the connection table.
To connect the Extract Gauges:2 signal to the Airspeed Indicator block, click OK.

Tip To directly select the signal to connect, on the Extract Flight Instruments block, select the
third output port (Roll Flightpath).
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9 Simulate the model and observe the gauge as it registers the data.
10 To change the signal to connect to, you can:
» Select the same or another block and then select another signal in the updated block
connection table.

* Select another output port for the same or a different block.
11 Close the model without saving it.

To create a Simulink model with prewired connections to flight instrument blocks, see
flightControl3DOFAirframeTemplate.

See Also

Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature
(EGT) Indicator | Heading Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

More About
. “Flight Instrument Gauges” on page 2-41
. “Programmatically Interact with Gauge Band Colors” on page 2-44
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Programmatically Interact with Gauge Band Colors

You can programmatically change Airspeed Indicator, EGT Indicator, and RPM Indicator gauge band
colors using the ScaleColors property. When used with get param, this property returns an n-by-1
structure containing these elements, where n is the number of colored bands on the gauge:

* Min — Minimum value range for a color band

* Max — Maximum value range for a color band

* Color — RGB color triplet for a band (range from 0 to 1)

This example describes how to change a color band of the EGT Indicator gauge. By default, the EGT
Indicator gauge looks like this.

This gauge has three bands, clockwise 1, 2, and 3.

Create a blank model and add an EGT Indicator block.
Select the EGT Indicator block.
To change the color bands for the EGT Indicator gauge, get the handle of the scale color objects.

sc=get param(gcb, 'ScaleColors"')
sc =
3x1 struct array with fields:
Min

Max
Color

4 To see the values of the Min, Max, and Color values, use the sc handle. For example, to see the
values of the first band, sc(1), type:

sc(1)
sc(1)
ans =
struct with fields:

Min: 0
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Max: 700
Color: [0.2980 0.7333 0.0902]

5 To change the color and size of this band, define a structure with different Min, Max, and Color
values and set ScaleColors to that new structure. For example, to change the band range to 1
to 89 and the color to red:

sc(l) = struct('Min',1, 'Max"',89, 'Color',[1 0 0]);
set param(gcb, 'ScaleColors',sc)

6 Observe the change in the EGT Indicator gauge.

7 You can add and change as many color bands as you need. For example, to add a fourth band and
set up the gauge with that band:

sc(4) = struct('Min',200, 'Max',300, 'Color',[0 1 .6]1);
set param(gcb, 'ScaleColors',sc)

See Also

Airspeed Indicator | Exhaust Gas Temperature (EGT) Indicator | Revolutions Per Minute (RPM)
Indicator

More About
. “Flight Instrument Gauges” on page 2-41

. “Display Measurements with Cockpit Instruments” on page 2-42
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Calculate UT1 to UTC Values

Calculate the difference between principal Universal Time (UT1) and Coordinated Universal Time
(UTC) according to International Earth Rotation Service (IERS) by using the Delta UT1 block. Use the
Delta UT1 block with these axes transformation blocks:

e LIA to ECI Position
e ECI Position to LLA

e Direction Cosine Matrix ECI to ECEF
e ECI Position to AER

To calculate the difference between UT1 and UTC, the Delta UT1 block requires the modified Julian
date. This example uses the Julian Date Conversion block. However, you can calculate the modified
Julian data with other methods. For example, you can use the mjuliandatemjuliandate function
from the Aerospace Toolbox software to calculate the date and input the result to the Delta UT1
block.

Use the Delta UT1 Block to Create Difference Values for the Direction
Cosine Matrix ECI to ECEF Block

2-46
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This model shows how a Direction Cosine Matrix ECI to ECEF block uses the output from the Delta
UT1 and Julian Data Conversion blocks to obtain the difference between UTC and Universal Time
(UT1).

1 Drag these blocks into a new model and connect them as shown:

* Julian Date Conversion

* Delta UT1

* Direction Cosine Matrix ECI to ECEF
* Display

* Three Constant blocks

2 Set up the Julian Date Conversion to convert the date December 28, 2015 to its modified Julian
date equivalent. This date must match the one specified in the Direction Cosine Matrix ECI to
ECEE
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e For Year, enter 2015.
¢ For Month, enter 12.
» For Day, enter 28.

» To calculate the modified Julian date for December 28, 2015, select the Calculate modified
Julian date check box.

* For Time increment, select None.

3 Leave the default settings for Delta UT1. By default, the block calculates the difference between
Universal Time (UT1) and Universal Coordinated Time (UTC) to using the aeroiersdata.mat
file supplied with the Aerospace Blockset software.

4  Set up the Direction Cosine Matrix ECI to ECEF block to work with the Universal Coordinated
Time (UTC) December 28, 2015. This date must match the one specified in the Julian Date
Conversion block:

* For Year, enter 2015.

* For Month, enter 12.

* For Day, enter 28.

* For Time increment, select None.

5 Setup the AUT1, AAT, and polar displacement of the Earth inputs for the Direction Cosine Matrix
ECI to ECEE.

* Constant — Set Constant value to 1.
* Constantl — Set Constant value to 1.
* Constant2 — Set Constant value to [ .05 .05].
6 Save and run the model. Observe the resulting direction cosine matrix in the Display block.

| -0.1044]| 0.0942|| -0.02431|
—»l -0.0024| -0.1031|| 0.06648]
| 0.06359| 0.02111|| 0.9975|
See Also

Delta UT1 | Direction Cosine Matrix ECI to ECEF | Julian Date Conversion
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Analyze Dynamic Response and Flying Qualities of Aerospace
Vehicles

2-48

Aerospace Blockset provides flight control analysis tools that you can use to analyze the dynamic
response and flying qualities of aerospace vehicles.

* “Flight Control Analysis Live Scripts” on page 2-48 — MATLAB live scripts demonstrate dynamic
response and flying quality analysis of Sky Hogg and de Havilland Beaver airframes.

* “Modify Flight Control Analysis Templates” on page 2-50 — You can use templates to analyze the
flying qualities of three degree-of-freedom and six degree-of-freedom airframe models. When you
are comfortable running the analysis on the default airframes, you can replace them with your
own airframe and analyze it.

» “Plot Short-Period Undamped Natural Frequency Results” on page 2-51 — After computing
lateral-directional handling qualities, use the Aerospace Toolbox short-period functions to plot the
short-period undamped natural frequency response.

Note Analyzing dynamic response and flying qualities of airframes requires a Simulink Control
Design license.

Flight Control Analysis Live Scripts

Each flight control analysis template has an associated MATLAB live script that guides you through a
flying quality analysis workflow for the default airframe. You can interact with the script and explore
the analysis workflow.

* DehavillandBeaverFlyingQualityAnalysis — Compute longitudinal and lateral-directional flying
qualities for a Dehavilland Beaver airframe.

+ SkyHoggLongitudinalFlyingQualityAnalysis — Compute longitudinal flying qualities for a Sky
Hogg airframe.

For more information on running live scripts, see “Create and Run Sections in Code”.
1 Open one of the templates, for example:

asbFlightControlAnalysis('6DOF")

Navigate to the Getting Started section and click the first link.

Alternatively, in the Command Window, type:

open('DehavillandBeaverFlyingQualityAnalysis')

2 The script describes how to use eigenvalue analysis to determine the longitudinal flying qualities
(long-period phugoid mode and short-period mode) and lateral-directional flying qualities (Dutch
roll mode, roll mode, and spiral mode) for an aircraft modeled in Simulink.

As you run the script, when applicable, the results of the runs display inline.

Modify Flight Analysis Templates

Aerospace Blockset provides these templates:
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+ flightControl6 DOFAirframeTemplate — This template uses a six degree-of-freedom airframe
configured for linearization and quality analysis. For initialization, the template uses the de
Havilland Beaver airframe parameters.

+ flightControl3DOFAirframeTemplate — This template uses a three degree-of-freedom longitudinal
airframe configured for linearization and quality analysis. For initialization, the template uses Sky
Hogg airframe parameters.

When you are comfortable navigating the flight control analysis templates with the default airframes,
consider customizing the templates for your own airframe model.

Flight Control Analysis Templates

To familiarize yourself with Aerospace Blockset flight control analysis templates:

1 Open one of the templates. For example, to open a 3DOF template:

asbFlightControlAnalysis('3DOF")

To open a 6DOF template:

asbFlightControlAnalysis('6DOF")

The flight control analysis model opens.

Enwironmentsl Modeals

Project Title: 6DOF De Havilland Beaver Flying Quality Analysis

GDOF Alrframe Getting Started Analysis Workflow

This templale requires & BDOF Fallow he sleps below 1o compute longiuding and
aifframe configused fof linearzation |ateral-gireclional flying quaities and compare heir
using Simulink Centrol Design. walues against MIL-F-BTBSC reguirements

-—DM ¥lja E wadk:
) ?/_1‘?_ i saript that walks through a

e ——

Step 1 Wilialize the sframe model. Lse De Havilland
i Elick here to apena MATLAB live Beaver defaull vakies or custom variables.

longitudinal and lateral directional Step 2: Define an operaling point around which 1o m
flying quality analysis warkdflaw for the | | ga model. Load an exisiling De Havilland Beaver

Errranment Maded 'GDOF Airframe’ Simulink template. aparaling point epecilication chjecl or launch (he Mode|

Commands
Cia not medify acualor
command inputs '
+0

deronCmd il

#0

Lineanzer Trim Tool 1o creale a pew ong. You must use
the ‘Export’ button in the dislog window to save
your epCond. DperatingSpec object to the base
workspace.
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oparaling point specification. (Opbonal) Iniliskze the
Fodal with the Irim inpuls and slates. Simukate the
rnodiel ke confirm sleady-state behavies, then undo

D

ElevatarCmed
+

Rudsior
RudderCend

4
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Actuators Exabas i 1 )

StatesCut Sfep 4: Linearizs lhe siframs dynarics around a
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Visualization linear analysis poinis by right-clicking on a signal line,
and navigating to "Linear Analysis Poins™,

Step 5 Compube lsngitudinal handling guablies (phugaid
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airfrarme moded using eigenvaiue analysis, and compare
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Stales,

Step B: Compute laterakdirectional handing qualilies
(outeh roll, rall rade, and spiral modea) For a linear
ainlrarne moded using eigenvalue analysis, and compare
the results against MIL-F-8TESC requirements,

input Mapping De Haviland Beaver Cutput Mapping -
Must contain ane BOOF State Pcts
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2 The Analysis Workflow section contains a clickable guided workflow to compute longitudinal
and lateral-directional flying qualities and compare their values against MIL-F-8785C
requirements. Each step creates the necessary variables for the following step. To perform the
flying quality analysis, sequentially click the links in the steps.

Create an operating point specification object in the base workspace for the airframe model
using the Model Linearizer. Alternatively, load the default object provided in step 2.

To trim the airframe, click Trim the airframe in step 3. This action calls the trimAirframe
function.
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¢ To linearize the airframe around a trimmed operating point, click Linearize the airframe in
step 4. This action calls the linearizeAirframe function.

d  To compute the longitudinal flying qualities, click Compute longitudinal handling
qualities. This action calls the computeLongitudinalFlyingQualities function.

e To compute the lateral-directional handling qualities, click Compute lateral-directional
handling qualities in step 6. This action calls the
computeLateralDirectionalFlyingQualities function.

Modify Flight Control Analysis Templates

When you are comfortable using the 3DOF and 6DOF flight control analysis templates on page 2-49
to trim, linearize, and compute the longitudinal and lateral-directional handling qualities for the
default airframes, consider customizing the templates to include your own airframe.

1  Open a 3DOF or 6DOF template and change the airframe to one of your own. For example, to
change the template airframe to an external model:

asbFlightControlAnalysis('6DOF', 'sixDOFAirframeExample', 'DehavillandBeaver6DOFAirframe')

This command replaces the de Havilland Beaver subsystem with the
DehavillandBeaver6D0OFAirframe model and includes it as a referenced model.

Project Title: 6DOF DehavillandBeaver6DOFAirframe Flying Quality Analysis

Environmental Madats BDOF Airframe Getting Started Analysis Workflow
This tesrglale requires a BDOF Folkva he sleps bekow 1o compubs kngiuding and
airfrarme canliguned far linearization laleral-girectional fying quaities and compare hei
using Simulink Control Design. walugs agains! MIL-F-8T850 reguiremanis.
e — Sfep 1: nilialize the siframe model. Use De Havilland
o uston vaniabkes,
r— v fq" - DehavilandBeaverBOOFA iframe g‘:;"tﬁ mﬂ’::‘h:u’:g';” live Bearver detaull viskies of custom variables.
o2t langitudinal and ateral-directional Step 2: Define an operaling paint around which o trim
flying guality analysis warkflow far the | | pe el Load an exisiting De Havilland Beaver
Flevourrn ikl SO0 Ny Bl Bk il aperaling paint specificalion chject or launch the Model
By Linearizer Trim Tool 10 creale 2 new one. You must use
the 'Export’ button in the dialog window to save
e your opCond. OperatingSpec object to the base
Lommandas
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operalin ecification. (Optonal ) Ini
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: Step B: Campule lateral-directional handing qualilies
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Alternatively, in the corresponding canvas, manually replace the default model airframe in the
blue area with your own airframe.

2 On the canvas, align the inputs and outputs of the airframe using the Input Mapping and Output
Mapping subsystems.

3 Create a new operating point specification object. In the Analysis Workflow section, go to step 2
and click Launch to start the Model Linearizer.

4 To save your opCond.OperatingSpec object to the base workspace, click Export in the dialog
window.
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5 To trim, linearize, and compute the longitudinal and lateral-directional handling qualities for the
airframe model, click the links in workflow steps 3, 4, 5, and 6.

Explore Flight Control Analysis Functions

The flight control analysis live scripts and template workflows use these functions:

* asbFlightControlAnalysis

* trimAirframe

* linearizeAirframe

* computeLongitudinalFlyingQualities

* computelLateralDirectionalFlyingQualities

To customize your own scripts to trim airframes around operating points, linearize airframes, and
calculate longitudinal and lateral-directional handling qualities, you can use these functions in a
workflow:

Create a flight control analysis template using the asbFlightControlAnalysis function.
Trim the airframe model around an operating point using the trimAirframe function.

This step creates a trimmed operating point, which the linearizeAirframe function requires.

3 Linearize the airframe model around the trimmed operating point using the
linearizeAirframe function.

This step creates a state space model that describes the linearized dynamics of the airframe
model at a trimmed operating point.

4 Compute the flying qualities for the airframe, including short- and long-period (phugoid) mode
characteristics of the specified state space model, using
computeLongitudinalFlyingQualities. Compute lateral-directional (Dutch roll, roll, and
spiral) mode characteristics, using computelLateralDirectionalFlyingQualities.

For example:

asbFlightControlAnalysis('6DOF', 'DehavillandBeaverAnalysisModel');

opSpecDefault = DehavillandBeaver6DOFOpSpec('DehavillandBeaverAnalysisModel');

opTrim = trimAirframe('DehavillandBeaverAnalysisModel', opSpecDefault);

1inSys = linearizeAirframe('DehavillandBeaverAnalysisModel', opTrim);

lonFlyingQual = computelLongitudinalFlyingQualities('DehavillandBeaverAnalysisModel', 1inSys)
latFlyingQual = computelateralDirectionalFlyingQualities('DehavillandBeaverAnalysisModel', 1inSys)

Plot Short-Period Undamped Natural Frequency Results

After computing the lateral-directional handling qualities, you can plot the short-period undamped
natural frequency response w,gp using the shortPeriodCategoryAPlot function. To plot the
category B or category C flight phase, use the shortPeriodCategoryBPlot or
shortPeriodCategoryCPlot function. This example describes how to plot the short-period
undamped natural frequency response for the Sky Hogg model.

1  Start the flight control analysis template for the 3DOF configuration.
asbFlightControlAnalysis('3DOF")

The 3DOF Sky Hogg Longitudinal Flying Quality Analysis project starts in the
Simulink Editor.
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2-52

To compute longitudinal and lateral-directional flying qualities, in the Analysis Workflow
section, click through the guided workflow, click OK when prompted.

After computing longitudinal and lateral-directional flying qualities, find and double-click the
lonFQ structure in your workspace.

Workspace
Mame Value
| aircraft 1xT FixedWing

@ flightControl300F... Tx7 Bus
&@| flightControlEnvBus  1x7 Bus

& linSys 2x 55

LxT struct

—H nalph 10

& opSpecDefault 1x1 OperatingSpec
Gl cpTrim 1xT OperatingPoint
& state 1x1 State

In the variables viewer, double-click the ShortPeriodMode variable.

VARIABLE SELECTION
| lonFQ | lonFQ.ShortPericdMode [

%1 struct with 2 fields

Field = Yalue
PhugeoidMode Tx7 struct

ShortPericdMode k Ix1 struct

Check that the wn variable exists. The wn variable is the short-period undamped natural
frequency response you want to plot.

Plot the short-period undamped natural frequency response. In the MATLAB Command Window,
use the shortPeriodCategoryAPlot function. For example, for a load factor per angle of
attack of 10, enter this command.

shortPeriodCategoryAPlot (10, lonFQ.ShortPeriodMode.wn, 'ro')

A figure window with the plotted short-period undamped natural frequency response displays.
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6 To evaluate if the results are within your tolerance limits, check that the red dot is within your
limits.
See Also

asbFlightControlAnalysis | computelLateralDirectionalFlyingQualities |
computelongitudinalFlyingQualities | linearizeAirframe | trimAirframe |
shortPeriodCategoryAPlot | shortPeriodCategoryBPlot | shortPeriodCategoryCPlot |
Model Linearizer
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Model and Simulate CubeSats

To create models, use the CubeSat Vehicle blocks, model template, and project. Explore the
spacecraft example modeling multiple spacecraft. The CubeSat Vehicle block propagates one satellite
at a time. To propagate multiple satellites simultaneously, use the Orbit Propagator block. To
calculate shortest quaternion rotation, use the Attitude Profile block.

To help you get started modeling and simulating spacecraft, Aerospace Blockset provides a project
and model on the Simulink Start Page.

===/ £ T e A
Flight Instruments CubeSat Vehicle Model CubeSat Simulation Project
'
ot Title: . CubeSat Vehicle Model

Project Title: <Your project name here> Create Model

By The MathWorks, Inc.
e

| = Aerospace Blockset lets you model, simulate, analyze, and visualize the motion and dynamics of

— | A CubeSats and nano satellites, which are miniaturized spacecraft designed for space research

I based on one or more 10cm cubes of up to 1.33kg per unit. This model template contains the

CubeSat Vehicle block from asbCubeSatBlockLib.slx and a Spherical Harmonic Gravity

Model from the Aerospace Blockset. Visualization using Simulink 3D Animation is provided if a
valid license exists.
The CubeSat Vehicle block models a simple CubeSat vehicle:

» Specify the initial orbital state as a set of Keplerian orbital elements; position and velocity

* CubeSat Vehicle Model template — A model template (CubeSat Simulation Project) that
illustrates how to propagate and visualize CubeSat trajectories using the CubeSat Vehicle block.
The Spherical Harmonic Gravity Model block is used as the gravitational potential source for orbit
propagation. The preconfigured pointing modes set in the CubeSat Vehicle block control the
attitude.

* CubeSat Simulation Project — A ready-to-simulate project (CubeSat Simulation Project)
that illustrates how to create a detailed CubeSat system design in Simulink by adding in detailed
vehicle components to the provided framework.

CubeSat Vehicle Model Template

The template model is a ready-to-simulate example that contains a CubeSat Vehicle block with
visualization using Simulink 3D Animation.

1  Start the CubeSat Vehicle Model template.
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- — e Prpond Ty <o porecd mrnr o .
| | | &8
Flight Instruments Cube&%at Vehicle Model CubeSat Simulation Project
N

1 . . CubeSat Vehicle Model
Project Title: <Your project name here> Create Model
o M By The Math\Works, Inc.

Aesrospace Blockset lets you model, simulate, analyze, and visualize the motion and dynamics of
CubeSats and nano satellites, which are miniaturized spacecraft designed for space research
based on one or more 10cm cubes of up to 1.33kg per unit. This model template contains the
CubeSat Wehicle block from asbCubeSatBlockLib.s1x and a Spherical Harmonic Gravity
Model from the Aerospace Blockset. Visualization using Simulink 3D Animation is provided if a
valid license exists.
The CubeSat Vehicle block models a simple CubeSat vehicle:

« Specify the initial orbital state as a set of Keplerian orbital elements; position and velocity

B L T

2 Click Create Model.

Project Title: <Your project name here>

Environment CubeSat Mode| Visualization

v XECEF

P Yecizmosy

P Yeceramady
Simulink 3D Animation

Kecer (M) M Xecer

L plx
ECEF Veegr (M/S) -V

ECEF
o2
Agcer A (misT)

q
Vecer QecizBady ™ Aeciogay

Environment
Models

eceraBady P YecerzBany

CubaSat Vehicle Scopes
Earth (Nadir} Pointing

3 The CubeSat Vehicle block models a simple CubeSat vehicle that you can use as is, with the
CubeSat Vehicle block configured to use the initial orbital state as a set of Keplerian orbital
elements.

The model uses the Spherical Harmonic Gravity Model block to provide the vehicle gravity for
the CubeSat.

To familiarize yourself with CubeSats, experiment with the CubeSat Vehicle block settings.

* On the CubeSat Orbit tab of the block, you can optionally use the Input method parameter
to change the initial orbital state as a set of:
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* Position and velocity state vectors in Earth-centered inertial axes
* Position and velocity state vectors in Earth-centered Earth-fixed axes

* Latitude, longitude, altitude, and velocity of the body with respect to ECEF, expressed in
the NED frame

* On the CubeSat Attitude tab, you can specify the alignment and constraint vectors to define
the CubeSat attitude control.

* The CubeSat vehicle first aligns the primary alignment vector with the primary constraint
vector. The CubeSat vehicle then attempts to align the secondary alignment vector with
the secondary constraint vector as closely as possible without affecting primary alignment.

* The CubeSat Altitude tab also lets you choose between preconfigured Earth (Nadir) Earth
Pointing (default) and Sun Tracking attitude control modes.

* On the Earth Orientation Parameters tab, you can direct the block to include higher order
earth orientation parameters in transformations between the ECI and ECEF coordinate
systems.

Run and simulate the model.

5 To view the output signals from the CubeSat, double-click the Scopes subsystem and open the
multiple scopes.

6 If you have a valid Simulink 3D Animation license, you can also visualize the orbit in the CubeSat
Orbit Animation window.

7 Save a copy of the orbit propagation model. You can use this model for the mission analysis live
script.

The CubeSat Vehicle Model template CubeSat Vehicle block uses simple preconfigured orbit and
attitude control modes. To model and simulate CubeSat vehicles using your own detailed components,
consider the CubeSat Simulation Project from the Simulink Start Page. For more information, see
“CubeSat Simulation Project” on page 2-56

CubeSat Simulation Project

The model is a ready-to-simulate example with visualization using Simulink 3D Animation. This
example uses a Vehicle Model subsystem in place of a CubeSat Vehicle block. For a simpler model
that illustrates the use of the CubeSat Vehicle block, see “CubeSat Vehicle Model Template” on page
2-54.

1  Start the CubeSat Simulation Project.
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Pt Trsr <Y gofeect smes e

Flight Instruments CubeSat Vehicle Model CubeSat Simulation Project

3

CubeSat Simulation Project
By The MathWorks, Inc.

B Create Project

Aerospace Blockset lets you model, simulate, analyze, and visualize the motion and dynamics of
CubeSats and nane satellites, which are miniaturized spacecrait designed for space research
based on one or more 10cm cubes of up to 1.33kg per unit. This project includes a ready-to-
simulate example with visualization using Simulink 3D Animation. To define the orbit trajectory and
attitude of the CubeSat, double-click the asbCubeSat/Edit Initial Orbit and Attitude block
in the model.

2 C(Click Create Project and follow the instructions.

CubeSat Simulation

Environment CubeSat Visualization

External Forces L States

and Torgues

-

Enviroment Modals

| BodyStates

Scopes

Virtual Reality World

Environment

Mission Configuration

a=B786233.1m
e=0.0010337
i=81.7518°

0 =95.2562°

w = 93 46727

AtttudeMods

| BodyStates

v = 3029234 wdir Pointing (Earth) - Wehicle Mode| E‘

Visualization

"

Edit Initial Orbit and Atitude Select Pointing Mode

3 The Vehicle Model subsystem models a CubeSat vehicle that you can use as is.

To create your own more sophisticated satellite models, experiment with the Vehicle Model
framework For example, you can replace the perfect thruster model included by default in the
actuator subsystem with your own more realistic thruster or reaction wheel model.

4 To change the orbit trajectory and attitude of the CubeSat, in the Mission Configuration section,
double-click the Edit Initial Orbit and Attitude block. These parameters have the same intent as
the corresponding parameters as the CubeSat Vehicle block.

5 Run and simulate the model.

To view the output signals from the CubeSat, double-click the Scopes subsystem and open the
multiple scopes.
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BodyStates . LatLondlt i C]

m km »

Geodeatic LatLonAlt

BodyStates . X_Ec,ef.—h- m km |

)
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ECEF Pos\el

BodyStates . q_ecizb f——m{ q_scizb
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BodyStates . ¥_ecef —m X_scef
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7 Ifyou have a license for Simulink 3D Animation, you can also visualize the orbit in an animation
window. Double-click the Visualization subsystem and click the Open Simulink 3D Animation
window button.

The CubeSat Orbit Animation window opens.
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&% CubeSat Orbit Animation

File  View Viewpoints Mavigation FRendering Simulation Recording  Help

E viEkamine v J ™ | 4 D d g | e o B

EarthSide T=0.00

Examine Pos:[0.00 0.00 22.00] Dir:[0.00 0.00 -1.00]

Utility Functions

Aerospace Toolbox provides utility functions for coordinate transformations. You can use these
functions to go between the various initial condition modes of the CubeSat Vehicle block.

Action Function

Calculate position and velocity vectors in Earth- |ecef2eci
centered inertial mean-equator mean-equinox

Calculate position, velocity, and acceleration ecizecef
vectors in Earth-centered Earth-fixed (ECEF)
coordinate system
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Action Function
Calculate Greenwich mean and apparent sidereal |siderealTime
times

Calculate Keplerian orbit elements using ijk2keplerian
geocentric equatorial position and velocity

vectors

Calculate position and velocity vectors in keplerian2ijk

geocentric equatorial coordinate system using
Keplerian orbit elements

References
[1] Vallado, D. A. Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.

See Also
Attitude Profile | CubeSat Vehicle | Orbit Propagator | ecef2eci | eci2ecef | ijk2keplerian |
keplerian2ijk | siderealTime

See Also
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Ideal Airspeed Correction

In this section...

“Introduction” on page 3-2

“Airspeed Correction Models” on page 3-2
“Measure Airspeed” on page 3-3

“Model Airspeed Correction” on page 3-4

“Simulate Airspeed Correction” on page 3-6

Introduction

This case study simulates indicated and true airspeed. It constitutes a fragment of a complete
aerodynamics problem, including only measurement and calibration.

Airspeed Correction Models

To view the airspeed correction models, enter the following at the MATLAB command line:

aeroblk indicated
aeroblk calibrated

Indicated Airspeed from True Airspeed Calculation

True Airspead

- ]
Altitude T (R —*— L TAS (kis)
. £ g (kts) P (kis) CAS (kts) | CAS
* b (ft) é_g_ P (psi) ,':-Fn[pﬂi]
Flap Sefiing __D_Lm > |deal Airspeed Correction 145 > C]
COESA Atmosphere Model
40 | Flap
Flap settings
0 degrees, Calculate IAS
10 degrees, or
40 degreas Cesena 150M Commuter

3-2

Sea Airspead Calibration Table

aeroblk_indicated Model
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True Airspeed from Indicated Airspeed Calculation

Indicated Airspeed

70 | A5

10 | Flap >

- .

Altitude @ TR} _.'5 Calculata CAS : CAS (k=)

a (kts) * 3 (kts) TAS [kis) [—™

500 F—»lni) S 8 - - »|P_ (psi) B

COESA >
_—ﬂm = Ideal Airspeed Correction

COESA Atmosphere Model

Flap settings

0 degrees
10 degrees
40 degrees

Cesena 150M Commuter

Sae Arspeed Calibration Table

aeroblk_calibrated Model

Measure Airspeed

To measure airspeed, most light aircraft designs implement pitot-static airspeed indicators based on
Bernoulli's principle. Pitot-static airspeed indicators measure airspeed by an expandable capsule that
expands and contracts with increasing and decreasing dynamic pressure. This is known as calibrated
airspeed (CAS). It is what a pilot sees in the cockpit of an aircraft.

To compensate for measurement errors, it helps to distinguish three types of airspeed. These types
are explained more completely in the following.

Airspeed Type Description

Calibrated Indicated airspeed corrected for calibration error
Equivalent Calibrated airspeed corrected for compressibility error
True Equivalent airspeed corrected for density error

Calibration Error

An airspeed sensor features a static vent to maintain its internal pressure equal to atmospheric
pressure. Position and placement of the static vent with respect to the angle of attack and velocity of
the aircraft determines the pressure inside the airspeed sensor and therefore the calibration error.
Thus, a calibration error is specific to an aircraft's design.

An airspeed calibration table, which is usually included in the pilot operating handbook or other
aircraft documentation, helps pilots convert the indicated airspeed to the calibrated airspeed.

Compressibility Error

The density of air is not constant, and the compressibility of air increases with altitude and airspeed,
or when contained in a restricted volume. A pitot-static airspeed sensor contains a restricted volume
of air. At high altitudes and high airspeeds, calibrated airspeed is always higher than equivalent
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airspeed. Equivalent airspeed can be derived by adjusting the calibrated airspeed for compressibility
error.

Density Error

At high altitudes, airspeed indicators read lower than true airspeed because the air density is lower.
True airspeed represents the compensation of equivalent airspeed for the density error, the
difference in air density at altitude from the air density at sea level, in a standard atmosphere.

Model Airspeed Correction

The aeroblk indicated and aeroblk calibrated models show how to take true airspeed and
correct it to indicated airspeed for instrument display in a Cessna 150M Commuter light aircraft. The
aeroblk indicated model implements a conversion to indicated airspeed. The

aeroblk calibrated model implements a conversion to true airspeed.

Each model consists of two main components:

* “COESA Atmosphere Model Block” on page 3-4 calculates the change in atmospheric conditions
with changing altitude.

» “Ideal Airspeed Correction Block” on page 3-4 transforms true airspeed to calibrated airspeed
and vice versa.

COESA Atmosphere Model Block

The COESA Atmosphere Model block is a mathematical representation of the U.S. 1976 COESA
(Committee on Extension to the Standard Atmosphere) standard lower atmospheric values for
absolute temperature, pressure, density, and speed of sound for input geopotential altitude. Below
32,000 meters (104,987 feet), the U.S. Standard Atmosphere is identical with the Standard
Atmosphere of the ICAO (International Civil Aviation Organization).

The aeroblk indicated and aeroblk calibrated models use the COESA Atmosphere Model
block to supply the speed of sound and air pressure inputs for the Ideal Airspeed Correction block in
each model.

Ideal Airspeed Correction Block

The Ideal Airspeed Correction block compensates for airspeed measurement errors to convert
airspeed from one type to another type. The following table contains the Ideal Airspeed Correction
block's inputs and outputs.

Airspeed Input Airspeed Output
True Airspeed Equivalent airspeed
Calibrated airspeed
Equivalent Airspeed True airspeed
Calibrated airspeed
Calibrated Airspeed True airspeed
Equivalent airspeed

In the aeroblk indicated model, the Ideal Airspeed Correction block transforms true to calibrated
airspeed. In the aeroblk calibrated model, the Ideal Airspeed Correction block transforms
calibrated to true airspeed.


matlab:aeroblk_indicated
matlab:aeroblk_calibrated

Ideal Airspeed Correction

The following sections explain how the Ideal Airspeed Correction block mathematically represents
airspeed transformations:

* “True Airspeed Implementation” on page 3-5
» “Calibrated Airspeed Implementation” on page 3-5
» “Equivalent Airspeed Implementation” on page 3-5

True Airspeed Implementation

True airspeed (TAS) is implemented as an input and as a function of equivalent airspeed (EAS),
expressible as

EAS x a
TAS = —————
ao/6
where
a Speed of sound at altitude in m/s
) Relative pressure ratio at altitude
a Speed of sound at mean sea level in m/s

Calibrated Airspeed Implementation

Calibrated airspeed (CAS), derived using the compressible form of Bernoulli's equation and assuming
isentropic conditions, can be expressed as

CAS = \/(ZV—P‘)[(i + 1)(V_ Dy _ 1]

Y= Dpo |\ Po
where
Po Air density at mean sea level in kg/m?
Py Static pressure at mean sea level in N/m?
12 Ratio of specific heats
q Dynamic pressure at mean sea level in N/m?

Equivalent Airspeed Implementation

Equivalent airspeed (EAS) is the same as CAS, except static pressure at sea level is replaced by static
pressure at altitude.

2yP
EAS = | —=2
\/(V— Dpo

The symbols are defined as follows:

P

(ﬂ_}_ 1)(V_1)/V_ 1]

Po Air density at mean sea level in kg/m?

P Static pressure at altitude in N/m?

Ratio of specific heats

q Dynamic pressure at mean sea level in N/m?
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Simulate Airspeed Correction

In the aeroblk indicated model, the aircraft is defined to be traveling at a constant speed of 72
knots (true airspeed) and altitude of 500 feet. The flaps are set to 40 degrees. The COESA
Atmosphere Model block takes the altitude as input and outputs the speed of sound and air pressure.
Taking the speed of sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction block
converts true airspeed to calibrated airspeed. Finally, the Calculate IAS subsystem uses the flap
setting and calibrated airspeed to calculate indicated airspeed.

The model's Display block shows both indicated and calibrated airspeeds.

Indicated Airspeed from True Airspeed Calculation

True Airspead

3-6

T2 L 7147
Altitude TR > TAS (kis)
a > p{cas
~ a (kts) a lkis). CAS (kis)
e Fipsi) Py (omih
Flap Setting 0 (sl —*— \deal Airspeed Correction 145
COESA Aftmasphere Model
40 | Flap
Fiap 22lings
e Caloulate &S

‘Sae Airspeed Calibration Table

In the aeroblk calibrated model, the aircraft is defined to be traveling at a constant speed of 70
knots (indicated airspeed) and altitude of 500 feet. The flaps are set to 10 degrees. The COESA
Atmosphere Model block takes the altitude as input and outputs the speed of sound and air pressure.
The Calculate CAS subsystem uses the flap setting and indicated airspeed to calculate the
calibrated airspeed. Finally, using the speed of sound, air pressure, and true calibrated airspeed as
inputs, the Ideal Airspeed Correction block converts calibrated airspeed back to true airspeed.

The model's Display block shows both calibrated and true airspeeds.

True Airspeed from Indicated Airspeed Calculation

Indicated Alrspaed

70 o 145

Fl:

B
2
#
=

i

cas I
] ‘
10 »{Fizp
Altitude TR cociae oas CAS (ktz)
A apm a (kis) TAS (kis) — P
" ot = Pip) Fatrel)

sA
o (slugit) —*= |deal Airspeed Corraction
COESA Atmosphera Modsl

69
6951

Y‘Fl

Flap settings:
0 degrees.

10 degrees, or
40 degrees Gessna 150M Commuter

See Arspeed Calibration Table

See Also

Related Examples
. “Indicated Airspeed from True Airspeed Calculation” on page 7-40
. “True Airspeed from Indicated Airspeed Calculation” on page 7-48
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1903 Wright Flyer

1903 Wright Flyer

In this section...

“Introduction” on page 3-7

“Wright Flyer Model” on page 3-7
“Airframe Subsystem” on page 3-8
“Environment Subsystem” on page 3-10
“Pilot Subsystem” on page 3-11

“Run the Simulation” on page 3-11
“References” on page 3-12

Introduction

Note The final section of this study requires the Simulink 3D Animation software.

This case study describes a model of the 1903 Wright Flyer. Built by Orville and Wilbur Wright, the
Wright Flyer took to the skies in December 1903 and opened the age of controlled flight. The Wright
brothers' flying machine achieved the following goals:

* Left the ground under its own power
* Moved forward and maintained its speed
* Landed at an elevation no lower than where it started

This model is based on an earlier simulation [1] that explored the longitudinal stability of the Wright
Flyer and therefore modeled only forward and vertical motion along with the pitch angle. The Wright
Flyer suffered from numerous engineering challenges, including dynamic and static instability.
Laterally, the Flyer tended to overturn in crosswinds and gusts, and longitudinally, its pitch angle
would undulate [2].

Under these constraints, the model recreates the longitudinal flight dynamics that pilots of the Wright
Flyer would have experienced. Because they were able to control lateral motion, Orville and Wilbur
Wright were able to maintain a relatively straight flight path.

Note, running this model generates information messages in the MATLAB Command Window and
assertion warning messages in the Diagnostic Viewer. This is because the model illustrates the use of
the Assertion block to indicate that the flyer is hitting the ground when landing.

Wright Flyer Model

Open the Wright Flyer model by entering aeroblk wf 3dof at the MATLAB command line.


https://www.mathworks.com/products/3d-animation.html
matlab:aeroblk_wf_3dof
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The Airframe subsystem simulates the rigid body dynamics of the Wright Flyer airframe, including
elevator angle of attack, aerodynamic coefficients, forces and moments, and three-degrees-of-freedom
equations of motion.
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The Airframe subsystem consists of the following parts:

+ “Elevator Angle of Attack Subsystem” on page 3-8

* “Aerodynamic Coefficients Subsystem” on page 3-9

* “Forces and Moments Subsystem” on page 3-9
* “3DOF (Body Axes) Block” on page 3-9

Elevator Angle of Attack Subsystem

The Elevator Angle of Attack subsystem calculates the effective elevator angle for the Wright Flyer
airframe and feeds its output to the Pilot subsystem.
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1903 Wright Flyer

Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and equations for calculating the
aerodynamic coefficients, which are summed and passed to the Forces and Moments subsystem.
Stored in data sets, the aerodynamic coefficients are determined by interpolation using Prelookup
blocks.

Cl
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Forces and Moments Subsystem

The aerodynamic forces and moments acting on the airframe are generated from aerodynamic
coefficients. The Forces and Moments subsystem calculates the body forces and body moments acting
on the airframe about the center of gravity. These forces and moments depend on the aerodynamic
coefficients, thrust, dynamic pressure, and reference airframe parameters.

* |y Pd
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Campute Body Forses

3DOF (Body Axes) Block
The 3DOF (Body Axes) block use equations of motion to define the linear and angular motion of the

Wright Flyer airframe. It also performs conversions from the original model's axis system and the
body axes.
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Block Parameters: 3DOF (Body Axes) =
| 4, Enter Search String
3DOF EoM (mask) (link) ~

Integrate the three-degrees-of-freedom equations of motion to
determine body position, velocity, attitude, and related values.

Parameters

Main  State Attributes
Units: |English (Velocity in ft/s)
Mass type: | Fixed

Initial velocity:

[47.26 IE

Initial body attitude:

-(wf_alphaa-wf_incidence)*pi/180 8
P P

Initial incidence:

| wf_alphaa®pi/180 | 8

Initial position (x,z):
[[0-0.11 [E

Initial body rotation rate:

[wf g [

Initial mass:

| wf_weight/wf_gravity | 8

Inertia:

| wf_inertia | H

Gravity source: |Externa

9 Cancel Help Apply

3DOF (Body Axes) Block Parameters

Environment Subsystem

The first and final flights of the Wright Flyer occurred on December 17, 1903. Orville and Wilbur
Wright chose an area near Kitty Hawk, North Carolina, situated near the Atlantic coast. Wind gusts of
more than 25 miles per hour were recorded that day. After the final flight on that blustery December
day, a wind gust caught and overturned the Wright Flyer, damaging it beyond repair.

The Environment subsystem of the Wright Flyer model contains a variety of blocks from the
Environment sublibrary of the Aerospace Blockset software, including wind, atmosphere, and gravity,
and calculates airspeed and dynamic pressure. The Discrete Wind Gust Model block provides wind
gusts to the simulated environment. The other blocks are

* The Incidence & Airspeed block calculates the angle of attack and airspeed.
* The COESA Atmosphere Model block calculates the air density.

* The Dynamic Pressure block computes the dynamic pressure from the air density and velocity.

* The WGS84 Gravity Model block produces the gravity at the Wright Flyer's latitude, longitude,
and height.



1903 Wright Flyer

Viiz) E Vit ¢
Discrete

s
Gust
alpha_a
al
< uw airspaed
R v
sirspead
T(RI[>= 1
a s+ o Bos

h P (psi)[-+= oV

o (shugit) P

o
2 o
ihim g (fus?)—>_D:2 35

Kitty Hawk, NG
Latitude: 36 11.0°N
Longitude: 75 44.8' W

Pilot Subsystem

The Pilot subsystem controls the aircraft by responding to both pitch angle (attitude) and angle of
attack. If the angle of attack differs from the set angle of attack by more than one degree, the Pilot
subsystem responds with a correction of the elevator (canard) angle. When the angular velocity
exceeds +/- 0.02 rad/s, angular velocity and angular acceleration are also taken into consideration
with additional corrections to the elevator angle.

Pilot reaction time largely determined the success of the flights [1]. Without an automatic controller,
a reaction time of 0.06 seconds is optimal for successful flight. The Delay of Pilot (Variable Transport
Delay) block recreates this effect by producing a delay of no more than 0.08 second.
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to Move Canard
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Run the Simulation

The default values for this simulation allow the Wright Flyer model to take off and land successfully.
The pilot reaction time (wf B3) is set to 0.06 seconds, the desired angle of attack (wf_alphaa) is
constant, and the altitude attained is low. The Wright Flyer model reacts similarly to the actual
Wright Flyer. It leaves the ground, moves forward, and lands on a point as high as that from which it
started. This model exhibits the longitudinal undulation in attitude of the original aircraft.
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A pilot with quick reaction times and ideal flight conditions makes it possible to fly the Wright Flyer
successfully. The Wright Flyer model confirms that controlling its longitudinal motion was a serious
challenge. The longest recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Virtual Reality Visualization of the Wright Flyer

Note This section requires the Simulink 3D Animation.

The Wright Flyer model also provides a virtual world visualization, coded in Virtual Reality Modeling
Language (VRML) [3]. The VR Sink block in the main model allows you to view the flight motion in
three dimensions.

J® 1203 Wright Fiyer - o X

File View Viewpoints MNavigation Rendering Simulation Recording Help ~

Side-Rear View viwak vidM|sodd|e [

Side-Rear View T=248 Walk Pos:[10.00 2 11 91 55] Dir:[-0.86 -0.15 0.49]

1903 Wright Flyer Virtual Reality World
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https://www.mathworks.com/products/3d-animation.html

1903 Wright Flyer

[2] Culick, F. E. C. and H. R. Jex, “Aerodynamics, Stability, and Control of the 1903 Wright Flyer,” from
The Wright Flyer: An Engineering Perspective, ed. Howard S. Wolko, Smithsonian Institution
Press, 1987.

[3] Thaddeus Beier created the initial Wright Flyer model in Inventor format, and Timothy Rohaly
converted it to VRML.

See Also

3DOF (Body Axes) | Incidence & Airspeed | COESA Atmosphere Model | Dynamic Pressure | WGS84
Gravity Model

External Websites
. https://www.wrightexperience.com
. https://wright.nasa.gov
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In this section...

“Introduction” on page 3-14
“NASA HL-20 Lifting Body” on page 3-14
“The HL-20 Airframe and Controller Model” on page 3-15

Introduction

This case study models the airframe of a NASA HL-20 lifting body, a low-cost complement to the
Space Shuttle orbiter. The HL-20 is unpowered, but the model includes both airframe and controller.

For most flight control designs, the airframe, or plant model, needs to be modeled, simulated, and
analyzed. Ideally, this airframe should be modeled quickly, reusing blocks or model structure to
reduce validation time and leave more time available for control design. In this study, the Aerospace
Blockset software efficiently models portions of the HL-20 airframe. The remaining portions,
including calculation of the aerodynamic coefficients, are modeled with the Simulink software. This
case study examines the HL-20 airframe model and touches on how the aerodynamic data are used in
the model.

NASA HL-20 Lifting Body

The HL-20, also known as the Personnel Launch System (PLS), is a lifting body reentry vehicle
designed to complement the Space Shuttle orbiter. It was developed originally as a low-cost solution
for getting to and from low Earth orbit. It can carry up to 10 people and a limited cargo[1].

The HL-20 lifting body can be placed in orbit either by launching it vertically with booster rockets or
by transporting it in the payload bay of the Space Shuttle orbiter. The HL-20 lifting body deorbits
using a small onboard propulsion system. Its reentry profile is nose first, horizontal, and unpowered.

[ BTt . e e

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)
The HL-20 design has a number of benefits:

* Rapid turnaround between landing and launch reduces operating costs.
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The HL-20 has exceptional flight safety.

It can land conventionally on aircraft runways.

Potential uses for the HL-20 include

Orbital rescue of stranded astronauts
International Space Station crew exchanges
Observation missions

Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data from HL-20 tests are being
used in current NASA projects [2].

The HL-20 Airframe and Controller Model

You can open the HL-20 airframe and controller model by entering aeroblk HL20 at the MATLAB
command line.
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Modeling Assumptions and Limitations

Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

The airframe is assumed to be rigid and have constant mass, center of gravity, and inertia, since
the model represents only the unpowered reentry portion of a mission.

HL-20 is assumed to be a laterally symmetric vehicle.
Compressibility (Mach) effects are assumed to be negligible.

Control effectiveness is assumed to vary nonlinearly with angle of attack and linearly with angle of
deflection. Control effectiveness is not dependent on sideslip angle.

The nonlinear six-degrees-of-freedom aerodynamic model is a representation of an early version of
the HL-20. Therefore, the model is not intended for realistic performance simulation of later
versions of the HL-20.

The typical airframe model consists of a number of components, such as
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* Equations of motion
* Environmental models
* Calculation of aerodynamic coefficients, forces, and moments

The airframe subsystem of the HL-20 model contains five subsystems, which model the typical
airframe components:

* “6DOF (Euler Angles) Subsystem” on page 3-16

* “Environmental Models Subsystem” on page 3-16

* “Alpha, Beta, Mach Subsystem” on page 3-18

* “Aerodynamic Coefficients Subsystem” on page 3-19

* “Forces and Moments Subsystem” on page 3-21
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HL-20 Airframe Subsystem
6DOF (Euler Angles) Subsystem

The 6DOF (Euler Angles) subsystem contains the six-degrees-of-freedom equations of motion for the
airframe. In the 6DOF (Euler Angles) subsystem, the body attitude is propagated in time using an
Euler angle representation. This subsystem is one of the equations of motion blocks from the
Aerospace Blockset library. A quaternion representation is also available. See the 6DOF (Euler
Angles) and 6DOF (Quaternion) block reference pages for more information on these blocks.

Environmental Models Subsystem

The Environmental Models subsystem contains the following subsystems and blocks:

* The WGS84 Gravity Model block implements the mathematical representation of the geocentric
equipotential ellipsoid of the World Geodetic System (WGS84).

See the WGS84 Gravity Model block reference page for more information on this block.

* The COESA Atmosphere Model block implements the mathematical representation of the 1976
Committee on Extension to the Standard Atmosphere (COESA) standard lower atmospheric values
for absolute temperature, pressure, density, and speed of sound, given the input geopotential
altitude.
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See the COESA Atmosphere Model block reference page for more information on this block.
* The Wind Models subsystem contains the following blocks:

* The Wind Shear Model block adds wind shear to the model.

See the Wind Shear Model block reference page for more information on this block.

* The Discrete Wind Gust Model block implements a wind gust of the standard “1 - cosine”
shape.

See the Discrete Wind Gust Model block reference page for more information on this block.

* The Dryden Wind Turbulence Model (Continuous) block uses the Dryden spectral
representation to add turbulence to the aerospace model by passing band-limited white noise
through appropriate forming filters.

See the Dryden Wind Turbulence Model (Continuous) block reference page for more
information on this block.

The environmental models implement mathematical representations within standard references, such
as U.S. Standard Atmosphere, 1976.
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Wind Models in HL-20 Airframe Model
Alpha, Beta, Mach Subsystem

The Alpha, Beta, Mach subsystem calculates additional parameters needed for the aerodynamic
coefficient computation and lookup. These additional parameters include

¢ Mach number

Incidence angles (2 P)
* Airspeed
* Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity and corrects the body
rates for wind angular acceleration.
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Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta, Mach Subsystem)
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Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and equations for calculating the
six aerodynamic coefficients, which are implemented as in reference [1]. The six aerodynamic
coefficients follow.

Cy Axial-force coefficient

Cy Side-force coefficient

C, Normal-force coefficient

C Rolling-moment coefficient
Cn Pitching-moment coefficient
C, Yawing-moment coefficient

Ground and landing gear effects are not included in this model.

The contribution of each of these coefficients is calculated in the subsystems (body rate, actuator
increment, and datum), and then summed and passed to the Forces and Moments subsystem.

: ) v
v
®—> Par d
par
Aipha
—
Body Rate
e Damping
Apha
[ N
- d +
Incid Lial Bela . Coefi
Datum Coefficients.
Apha
Beta d
@—b Actustor Deflections

Actuator
Increments

Aerodynamic Coefficients in HL-20 Airframe Model

The aerodynamic data was gathered from wind tunnel tests, mainly on scaled models of a preliminary
subsonic aerodynamic model of the HL-20. The data was curve fitted, and most of the aerodynamic
coefficients are described by polynomial functions of angle of attack and sideslip angle. In-depth
details about the aerodynamic data and the data reduction can be found in reference [1].

The polynomial functions contained in the aeroblk init h120.m file are used to calculate lookup
tables used by the model's preload function. Lookup tables substitute for polynomial functions.
Depending on the order and implementation of the function, using lookup tables can be more efficient
than recalculating values at each time step with functions. To further improve efficiency, most tables
are implemented as PreLook-up Index Search and Interpolation (n-D) using PreLook-up blocks. These
blocks improve performance most when the model has a number of tables with identical breakpoints.
These blocks reduce the number of times the model has to search for a breakpoint in a given time
step. Once the tables are populated by the preload function, the aerodynamic coefficient can be
computed.

The equations for calculating the six aerodynamic coefficients are divided among three subsystems:
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* “Datum Coefficients Subsystem” on page 3-20
* “Body Rate Damping Subsystem” on page 3-20
* “Actuator Increment Subsystem” on page 3-20

Summing the Datum Coefficients, Body Rate Damping, and Actuator Increments subsystem outputs
generates the six aerodynamic coefficients used to calculate the airframe forces and moments [1].

Datum Coefficients Subsystem

The Datum Coefficients subsystem calculates coefficients for the basic configuration without control
surface deflection. These datum coefficients depend only on the incidence angles of the body.

W20 Tk
n

Body Rate Damping Subsystem

Dynamic motion derivatives are computed in the Body Rate Damping subsystem.

AlphaLogkup

Apha delCosff .
x
Alpha d

Reference Span
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Actuator Increment Subsystem

Lookup tables determine the incremental changes to the coefficients due to the control surface
deflections in the Actuator Increment subsystem. Available control surfaces include symmetric wing
flaps (elevator), differential wing flaps (ailerons), positive body flaps, negative body flaps, differential
body flaps, and an all-movable rudder.
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Forces and Moments Subsystem

The Forces and Moments subsystem calculates the body forces and body moments acting on the
airframe about the center of gravity. These forces and moments depend on the aerodynamic
coefficients, thrust, dynamic pressure, and reference airframe parameters.
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Complete the Model

These subsystems that you have examined complete the HL-20 airframe. The next step in the flight
control design process is to analyze, trim, and linearize the HL-20 airframe so that a flight control
system can be designed for it. You can see an example of an auto-land flight control for the HL-20
airframe in the aeroblk HL20 example.

References

[1] Jackson, E. B., and C. L. Cruz, “Preliminary Subsonic Aerodynamic Model for Simulation Studies
of the HL-20 Lifting Body,” NASA TM4302 (August 1992)..

[2] Morring, E, Jr., “ISS "Lifeboat' Study Includes ELVs,” Aviation Week & Space Technology (May 20,
2002).

See Also

External Websites
. http://www.astronautix.com/h/hl-20.html
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Customize 3D Scenes for Aerospace Blockset Simulations
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Aerospace Blockset contains prebuilt scenes in which to simulate and visualize the performance of

aircraft modeled in Simulink. These scenes are visualized using a standalone Unreal® executable

within the toolbox. If you have the Unreal from Epic Games and the Aerospace Blockset Interface for

Unreal Engine Projects installed, you can customize these scenes. You can also use the Computer

Vision Toolbox™ Interface for OpenCV in Simulink Editor and the support package to simulate within

scenes from your own custom project.

With custom scenes, you can co-simulate in both Simulink and the Unreal Editor so that you can
modify your scenes between simulation runs. To customize scenes, you should be familiar with
creating and modifying scenes in the Unreal Editor.

To customize 3D scenes, follow these steps:

1  “Install Support Package and Configure Environment” on page 4-3
2 “Customize Scenes Using Simulink and Unreal Editor” on page 4-6
3 “Package Custom Scenes into Executable” on page 4-12

See Also
Simulation 3D Scene Configuration

Related Examples

. “Get Started Communicating with the Unreal Engine Visualization Environment” (Vehicle
Dynamics Blockset)

. “Prepare Custom Vehicle Mesh for the Unreal Editor” (Vehicle Dynamics Blockset)

. “Place Cameras on Actors in the Unreal Editor” (Vehicle Dynamics Blockset)
More About
. “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-33

External Websites
. Unreal Engine
. Unreal Engine 4 Documentation


https://www.unrealengine.com/en-US/unreal
https://docs.unrealengine.com/en-us

Install Support Package and Configure Environment

Install Support Package and Configure Environment

To customize scenes in your installation of the Unreal Editor and simulate within these scenes in
Simulink, you must first install and configure the Aerospace Blockset Flight Control Analysis Library
support package.

Verify Software and Hardware Requirements

Before installing the support package, make sure that your environment meets the minimum software
and hardware requirements described in “Unreal Engine Simulation Environment Requirements and
Limitations” on page 2-33.

Install Support Package

To install the Aerospace Blockset Interface for Unreal Engine Projects support package, follow these
steps:

1 Onthe MATLAB Home tab, in the Environment section, select Add-Ons > Get Add-Ons.

=

@ ILQ; Community
E Request Support

Help
- _@_ Learn MATLAB

Get Add-Ons

Manage Add-Cns

Package Toolbox

Package App

o+ K3

2 In the Add-On Explorer window, search for the Aerospace Blockset Interface for Unreal Engine
Projects support package. Click Install.

Note You must have write permission for the installation folder.

Configure Environment

The Aerospace Blockset Interface for Unreal Engine Projects support package includes these
components:

* An Unreal project, AutoVrtlEnv.uproject, and its associated files. The project includes
editable versions of the prebuilt 3D scenes that you can select from the Scene description
parameter of the Simulation 3D Scene Configuration block. To use this project, you must copy the
file to a folder on your local machine.

* A plugin, MathWorkSimulation. This plugin establishes the connection between MATLAB and
the Unreal Editor and is required for co-simulation. You must copy this plugin to your local
installation of the editor.
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To copy the project to a local folder and the plugin to your Unreal Editor installation, follow these
one-time steps. Use the “Code That Configures Scene Configuration (Steps 1-4)” on page 4-4.

St |Description

ep

1 |Specify the location of the support package project files and a local folder destination.
Note You must have write permission for the local folder destination.

2 |Specify the location of the Unreal Engine installation, for example C:\Program Files\Epic
Games\UE 4.25.

3 |Copy the MathWorksSimulation plugin folder to the Unreal Engine plugin folder.
Copy the support package folder that contains the AutoVrtlEnv.uproject files to the local
folder destination.

Code That Configures Scene Configuration (Steps 1-4)

%% STEP1

° o°

Specify the location of the support package project files and a local folder destination
s Note: Only one path is supported. Select latest download path.

dest_root = "C:\Local";
src_root = fullfile(matlabshared.supportpkg.getSupportPackageRoot, ...

"toolbox", "shared", "sim3dprojects", "spkg");

%% STEP2
% Specify the location of the Unreal Engine installation.
ueInstFolder = "C:\Program Files\Epic Games\UE 4.25";

%% STEP3

% Copy the MathWorksSimulation plugin to the Unreal Engine plugin folder.
mwPluginName = "MathWorksSimulation";

mwPluginFolder = fullfile(src_root, "plugins");

uePluginFolder = fullfile(uelInstFolder, "Engine", "Plugins");

uePluginDst = fullfile(uePluginFolder, "Marketplace", "MathWorks");

cd(uePluginFolder)
foundPlugins = dir("**/" + mwPluginName + ".uplugin");

if ~isempty(foundPlugins)

numPlugins = size(foundPlugins, 1);
msg2 = cell(1l, numPlugins);
pluginCell = struct2cell(foundPlugins);

msgl = "Plugin(s) already exist here:" + newline + newline;

for n = 1l:numPlugins

msg2{n} = " " + pluginCell{2,n} + newline;
end
msg3 = newline + "Please remove plugin folder(s) and try again.";
msg = msgl + msg2 + msg3;

warning(msg);

else

end

copyfile(fullfile(mwPluginFolder, 'mw simulation', 'MathWorksSimulation'), uePluginDst);
disp("Successfully copied MathWorksSimulation plugin to UE4 engine plugins!")

%% STEP4

%
%
proj

proj
proj

Copy the support package folder that contains the AutoVrtlEnv.uproject
files to the local folder destination.

FolderName = "AutoVrtlEnv";
SrcFolder = fullfile(src_root, "project", projFolderName);
DstFolder = fullfile(dest root, projFolderName);

if ~exist(projDstFolder, "dir")

end

copyfile(projSrcFolder, projDstFolder);

See Also
Simulation 3D Scene Configuration
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More About

. “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
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Customize Scenes Using Simulink and Unreal Editor
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After you install the Aerospace Blockset Interface for Unreal Engine Projects support package as
described in “Install Support Package and Configure Environment” on page 4-3, you can simulate in
custom scenes simultaneously from both the Unreal Editor and Simulink. By using this co-simulation
framework, you can add aircraft and sensors to a Simulink model and then run this simulation in your
custom scene.

Open Unreal Editor

If you open your Unreal project file directly in the Unreal Editor, Simulink is unable to establish a
connection with the editor. To establish this connection, you must open your project from a Simulink
model or use a MATLAB function.

The first time that you open the Unreal Editor, you might be asked to rebuild UE4Editor DLL files or
the AutoVrtlEnv module. Click Yes to rebuild these files or modules. The editor also prompts you
that new plugins are available. Click Manage Plugins and verify that the MathWorks Interface
plugin is installed. This plugin is the MathWorksSimulation.uplugin file that you copied into your
Unreal Editor installation in “Install Support Package and Configure Environment” on page 4-3.

When the editor opens, you can ignore any warning messages about files with the name
' BuiltData' that failed to load.

If you receive a warning that the lighting needs to be rebuilt, from the toolbar above the editor
window, select Build > Build Lighting Only. The editor issues this warning the first time you open
a scene or when you add new elements to a scene.

Open Unreal Editor from Simulink
1 Open a Simulink model configured to simulate in the 3D environment. At a minimum, the model
must contain a Simulation 3D Scene Configuration block.

2 In the Simulation 3D Scene Configuration block of this model, set the Scene source parameter
toUnreal Editor.

3 In the Project parameter, browse for the project file that contains the scenes that you want to
customize.

For example, this sample path specifies the AutoVrtlEnv project that comes installed with the
Aerospace Blockset Interface for Unreal Engine Projects support package.

C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject
This sample path specifies a custom project.

Z:\UnrealProjects\myProject\myProject.uproject
4 Click Open Unreal Editor. The Unreal Editor opens and loads a scene from your project.

Open Unreal Editor Using Command-Line Function
To open the AutoVrtlEnv.uproject file that was copied from the Aerospace Blockset Interface for

Unreal Engine Projects support package, specify the path to where you copied this project. For
example, if you copied the AutoVrtlEnv.uproject to C:/Local/AutoVrtlEnv, use this code:
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path = fullfile('C:', 'Local', "AutoVrtlEnv', 'AutoVrtlEnv.uproject');
editor = sim3d.Editor(path);
open(editor);

The editor opens the AutoVrtlEnv.uproject file. By default, the project displays the Airport
scene.

To open your own project, use the same commands used to open the AutoVrtlEnv.uproject file.
Update the path variable with the path to your .uproject file. For example, if you have a project
saved to the C: /Local folder, use this code:

path = fullfile('C:"', 'Local', 'myProject', 'myProject.uproject');

editor = sim3d.Editor(path);
open(editor);

Reparent Actor Blueprint

Note If you are using a scene from the AutoVtrlEnv project that comes installed with the
Aerospace Blockset Interface for Unreal Engine Projects support package, skip this section. However,
if you create a new scene based off of one of the scenes in this project, then you must complete this
section.

The first time that you open a custom scene from Simulink, you need to associate, or reparent, this
project with the Sim3dLevelScriptActor level blueprint used in Aerospace Blockset. The level
blueprint controls how objects interact with the 3D environment once they are placed in it. Simulink
returns an error at the start of simulation if the project is not reparented. You must reparent each
scene in a custom project separately.

To reparent the level blueprint, follow these steps:

1 In the Unreal Editor toolbar, select Blueprints > Open Level Blueprint.
2 In the Level Blueprint window, select File > Reparent Blueprint.

3 Click the Sim3dLevelScriptActor blueprint. If you do not see the Sim3dLevelScriptActor
blueprint listed, use these steps to check that you have the MathWorksSimulation plugin
installed and enabled:

In the Unreal Editor toolbar, select Settings > Plugins.

In the Plugins window, verify that the MathWorks Interface plugin is listed in the installed
window. If the plugin is not already enabled, select the Enabled check box.

If you do not see the MathWorks Interface plugin in this window, repeat step 3 in
“Configure Environment” on page 4-3 and reopen the editor from Simulink.

¢ Close the editor and reopen it from Simulink.
4  Close the Level Blueprint window.

Create or Modify Scenes in Unreal Editor

After you open the editor, you can modify the scenes in your project or create new scenes.
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Open Scene

In the Unreal Editor, scenes within a project are referred to as levels. Levels come in several types,
and scenes have a level type of map.

To open a prebuilt scene from the AutoVrtlEnv.uproject file, in the Content Browser pane
below the editor window, navigate to the Content > Maps folder. Then, select the map that
corresponds to the scene you want to modify.

Unreal Editor Map Aerospace Blockset Scene
Airport Airport
GriffissAirport Griffiss International Airport

To open a scene within your own project, in the Content Browser pane, navigate to the folder that
contains your scenes.

Send Data to Scene

The Simulation 3D Message Get block retrieves data from the Unreal Engine 3D visualization
environment. To use the block, you must configure scenes in the Unreal Engine environment to send
data to the Simulink model.

Receive Data from Scene

The Simulation 3D Message Set block sends data to the Unreal Engine 3D visualization environment.
To use the block, you must configure scenes in the Unreal Engine environment to receive data from
the Simulink model.

Create New Scene
To create a new scene in your project, from the top-left menu of the editor, select File > New Level.

Alternatively, you can create a new scene from an existing one. This technique is useful if you want to
use one of the prebuilt scenes in the AutoVtrlEnv project as a starting point for creating your own
scene. To save a version of the currently opened scene to your project, from the top-left menu of the
editor, select File > Save Current As. The new scene is saved to the same location as the existing
scene.

Add Assets to Scene

In the Unreal Editor, elements within a scene are referred to as assets. To add assets to a scene, you
can browse or search for them in the Content Browser pane at the bottom and drag them into the
editor window.

When adding assets to a scene that is in the AutoVrtlEnv project, you can choose from a library of
driving-related assets. These assets are built as static meshes and begin with the prefix SM . Search
for these objects in the Content Browser pane.

For example, to add a hangar to a scene in the AutoVrtlEnv project:

In the Content Browser pane at the bottom of the editor, navigate to the Content folder.

In the search bar, search for SM_Hangar. Drag the hangar from the Content Browser into the
editing window. You can then change the position of the hangar in the editing window or on the
Details pane on the right, in the Transform section.
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The Unreal Editor uses a left-hand Z-up coordinate system, where the Y-axis points to the right. The
aerospace vehicle blocks in Aerospace Blockset use a right-hand Z-down coordinate system, where
the Y-axis points to the right. When positioning objects in a scene, keep this coordinate system
difference in mind.

For more information on modifying scenes and adding assets, see Unreal Engine 4 Documentation.

To migrate assets from the AutoVrtlEnv project into your own project file, see Migrating Assets in
the Unreal Engine documentation.

Use AutoVrtlEnv Project Lighting in Custom Scene

To use the lighting that comes installed with the AutoVrtlEnv project in Aerospace Blockset, follow
these steps.

1  On the World Settings tab, clear Force no precomputed lighting.

& VWorld Settings

4 Precomputed Visibility

Precompute Visibility .

4 Game Mode

2 Under Build, select Lighting Quality > Production to rebuild the maps with production
quality. Rebuilding large maps can take time.

Build Launch

Lighting

Run Simulation

Verify that the Simulink model and Unreal Editor are configured to co-simulate by running a test
simulation.

1 In the Simulink model, click Run.
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Because the source of the scenes is the project opened in the Unreal Editor, the simulation does
not start. Instead, you must start the simulation from the editor.

2 Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated aircraft and other assets in the Unreal
Engine 3D environment.

3 Inthe Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor. If your Simulink model contains aircraft, these aircraft drive through the scene that is

open in the editor.

To control the view of the scene during simulation, in the Simulation 3D Scene Configuration block,
select the aircraft name from the Scene view parameter. To change the scene view as the simulation
runs, use the numeric keypad in the editor. The table shows the position of the camera displaying the
scene, relative to the aircraft selected in the Scene view parameter.

To smoothly change the camera views, use these key commands.

Key

Camera View

Back left

Back

Back right

Left

Internal

Right

Front left

Front

Front right

S|l O IOl B~ W| N -

Overhead

For additional camera controls, use these key commands.

Key

Camera Control

Tab

Cycle the view between all vehicles in the scene.

Mouse scroll wheel

Control the camera distance from the aircraft.

L

Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

* Position lag, based on the aircraft translational acceleration
* Rotation lag, based on the aircraft rotational velocity

This lag enables improved visualization of overall aircraft acceleration and
rotation.




Customize Scenes Using Simulink and Unreal Editor

Key Camera Control

F Toggle the free camera mode on or off. When you enable the free camera
mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the aircraft.

To restart a simulation, click Run in the Simulink model, wait until the Diagnostic Viewer displays the
confirmation message, and then click Play in the editor. If you click Play before starting the
simulation in your model, the connection between Simulink and the Unreal Editor is not established,
and the editor displays an empty scene.

If you are co-simulating a custom project, to enable the numeric keypad, copy the
DefaultInput.ini file from the support package installation folder to your custom project folder.
For example, copy DefaultInput.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABRelease>\toolbox\shared\sim3dprojects\driving\AutoV
to:

C:\<yourproject>.project\Config

After tuning your custom scene based on simulation results, you can then package the scene into an

executable. For more details, see “Package Custom Scenes into Executable” on page 4-12.

See Also
Simulation 3D Scene Configuration | sim3d.Editor

External Websites
. Unreal Engine
. Unreal Engine 4 Documentation
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When you finish modifying a custom scene as described in “Customize Scenes Using Simulink and
Unreal Editor” on page 4-6, you can package the project file containing this scene into an executable.
You can then configure your model to simulate from this executable by using the Simulation 3D Scene
Configuration block. Executable files can improve simulation performance and do not require opening
the Unreal Editor to simulate your scene. Instead, the scene runs by using the Unreal Engine that
comes installed with Aerospace Blockset.

Package Scene into Executable Using Unreal Editor

1

Open the project containing the scene in the Unreal Editor. You must open the project from a
Simulink model that is configured to co-simulate with the Unreal Editor.

In the Unreal Editor toolbar, select Settings > Project Settings to open the Project Settings
window.

In the left pane, in the Project section, click Packaging.

In the Packaging section, set or verify the options in the table. If you do not see all these
options, at the bottom of the Packaging section, click the Show Advanced expander

R

Packaging Option Enable or Disable
Use Pak File Enable

Cook everything in the project content |Disable
directory (ignore list of maps below)

Cook only maps (this only affects Enable
cookall)

Create compressed cooked packages Enable
Exclude editor content while cooking Enable

Specify the scene from the project that you want to package into an executable.

a Inthe List of maps to include in a packaged build option, click the Adds Element
button .

b Specify the path to the scene that you want to include in the executable. By default, the
Unreal Editor saves maps to the /Game/Maps folder. For example, if the /Game/Maps folder
has a scene named myScene that you want to include in the executable, enter /Game/Maps/
myScene.

¢ Add or remove additional scenes as needed.

Specify the required asset directories to include in the executable. These directories are located
in the MathWorksSimulation plugin.

Under Additional Asset Directories to Cook, click the Adds Element button ksl to add
elements and specify these directories:

* /MathWorksSimulation/Characters



Package Custom Scenes into Executable

* /MathWorksSimulation/VehiclesCommon
* /MathWorksSimulation/Vehicles
« /MathWorksSimulation/Weather

Rebuild the lighting in your scenes. If you do not rebuild the lighting, the shadows from the light
source in your executable file are incorrect and a warning about rebuilding the lighting displays
during simulation. In the Unreal Editor toolbar, select Build > Build Lighting Only.

Close the Project Settings window.

In the top-left menu of the editor, select File > Package Project > Windows > Windows (64-
bit). Select a local folder in which to save the executable, such as to the root of the project file
(for example, C: /Local/myProject).

Note Packaging a project into an executable can take several minutes. The more scenes that you
include in the executable, the longer the packaging takes.

Once packaging is complete, the folder where you saved the package contains a
WindowsNoEditor folder that includes the executable file. This file has the same name as the
project file.

Note If you repackage a project into the same folder, the new executable folder overwrites the
old one.

Suppose you package a scene that is from the myProject.uproject file and save the
executable to the C: /Local/myProject folder. The editor creates a file named
myProject.exe with this path:

C:/Local/myProject/WindowsNoEditor/myProject.exe

Simulate Scene from Executable in Simulink

To improve co-simulation performance, consider configuring the Simulation 3D Scene Configuration
block to co-simulate with the project executable.

1

4

In the Simulation 3D Scene Configuration block of your Simulink model, set the Scene source
parameter to Unreal Executable.

Set the File name parameter to the name of your Unreal Editor executable file. You can either
browse for the file or specify the full path to the file by using backslashes. For example:
C:\Local\myProject\WindowsNoEditor\myProject.exe

Set the Scene parameter to the name of a scene from within the executable file. For example:

/Game/Maps/myScene
Run the simulation. The model simulates in the custom scene that you created.

If you are simulating a scene from a project that is not based on the AutoVtrlEnv project, then the
scene simulates in full screen mode. To use the same window size as the default scenes, copy the
DefaultGameUserSettings.ini file from the support package installation folder to your custom
project folder. For example, copy DefaultGameUserSettings.ini from:
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4 Supporting Data

C:\ProgramData\MATLAB\SupportPackages\<MATLABrelease>\toolbox\shared\sim3dprojects\automotive\Au
to:

C:\<yourproject>.project\Config

Then, package scenes from the project into an executable again and retry the simulation.

See Also
Simulation 3D Scene Configuration

More About

. “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
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1D Controller [A(Vv),B(Vv),C(v),D(v)]

Implement gain-scheduled state-space controller depending on one scheduling parameter
Library: Aerospace Blockset / GNC / Control

W
W

Description

The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller, as
described in “Algorithms” on page 5-4.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations

If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports

Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.

Data Types: double

v — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double
Output

u — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters

A-matrix(v) — A matrix of the state-space implementation
Al (default) | array



1D Controller [A(v),B(v),C(v),D(v)]

A-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the A-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the A-matrix corresponding to the first entry of v is the identity matrix, then A(:,:,1) =
[1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'Al’

B-matrix(v) — B matrix of the state-space implementation
B1 (default) | array

B-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the B-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the B-matrix corresponding to the first entry of v is the identity matrix, then B(:,:,1) =
[10;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B1'

C-matrix(v) — C matrix of the state-space implementation
C1 (default) | array

C-matrix of the state-space implementation, specified as a vector. In the case of 1-D scheduling, the C-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the C-matrix corresponding to the first entry of v is the identity matrix, then C(:,:,1) =
[10;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C1'

D-matrix(v) — D
D1 (default) | array

D-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the D-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the D-matrix corresponding to the first entry of v is the identity matrix, thenD(:,:,1) =
[1 0;0 17;.

Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D1'

Scheduling variable breakpoints — Breakpoints for scheduling variable
v_vec (default) | vector

5-3



5 Blocks

Breakpoints for the scheduling variable, specified as a vector. The length of v must be the same as the
size of the third dimension of A, B, C, and D.

Programmatic Use

Block Parameter: AoA vec
Type: character vector
Values: vector

Default: 'v_vec'

Initial state, x_initial — Initial states
0 (default) | vector

Initial states for the controller, such as initial values for the state vector, x, specified as a vector. The
length of the vector must equal the size of the first dimension of A.

Programmatic Use

Block Parameter: x_initial
Type: character vector

Values: vector

Default: '0'

Algorithms

The block implements a gain-scheduled state-space controller as defined by this equation:

x = A(v)x + B(v)y
u=CW\)x+ D)y

where v is a parameter over which A, B, C, and D are defined. This type of controller scheduling
assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in
aerospace applications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™

See Also
1D Controller [Al ( ),B(v),C(v),D(v)] | 1D Observer Form [A( ),B(v),C(v),F(v),H(v)] | 1D Self- COIldlthIled
[A(v),B(v),C(v),D(V)] | 2D Contro]]er [A(v),B(v),C(v),D(v)] | 3D Controller [A ( ),B(v),C(v),D(v)] | Linear

Second-Order Actuator | Nonlinear Second-Order Actuator

Introduced before R2006a



1D Controller Blend: u=(1-L).K1.y+L.K2.y

1D Controller Blend: u=(1-L).K1.y+L.K2.y

Implement 1-D vector of state-space controllers by linear interpolation of their outputs
Library: Aerospace Blockset / GNC / Control

¥
w

Description

The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of state-space controller
designs. The model runs the controllers in parallel and interpolates their outputs according to the
current flight condition or operating point. The advantage of this implementation approach is that the
state-space matrices A, B, C, and D for the individual controller designs do not need to vary smoothly

from one design point to the next. The output from this block is the actuator demand, which you can
input to an actuator block.

Limitations

This block requires the Control System Toolbox™ license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.

Data Types: double

v — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double
Output

u — Actuator demands
vector

Actuator demands, specified as a vector.

Data Types: double
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Parameters

A-matrix(v) — A-matrix of the state-space implementation
Al (default) | array

A-matrix of the state-space implementation, specified as a array. In the case of 1-D blending, the A-
matrix should have three dimensions, the last one corresponding to scheduling variable v. For
example, if the A-matrix corresponding to the first entry of v is the identity matrix, then A(:,:,1) =
[10;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'Al’

B-matrix(v) — B-matrix of the state-space implementation
B1 (default) | array

B-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the B-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the B-matrix corresponding to the first entry of v is the identity matrix, then B(:,:,1) =
[10;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B1’

C-matrix(v) — C-matrix of the state-space implementation
C1 (default) | array

C-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the C-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the C-matrix corresponding to the first entry of v is the identity matrix, then C(:,:,1) =
[10;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C1'

D-matrix(v) — D-matrix of the state-space implementation
D1 (default) | array

D-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the D-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the D-matrix corresponding to the first entry of v is the identity matrix, thenD(:,:,1) =
[1 0;0 17;.

Programmatic Use
Block Parameter: D
Type: character vector



1D Controller Blend: u=(1-L).K1.y+L.K2.y

Values: vector
Default: 'D1'

Scheduling variable breakpoints — Breakpoints for scheduling variable
[1 1.5 2] (default) | vector

Breakpoints for the scheduling variable, specified as a vector. The length of v must be same as the
size of the third dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints v
Type: character vector

Values: vector

Default: '[1 1.5 2]°

Initial state, x_initial — Initial states
0 (default) | vector

Initial states for the controller, such as initial values for the state vector, x, specified as a vector. The
length must equal the size of the first dimension of A.

Programmatic Use

Block Parameter: x_initial
Type: character vector

Values: vector

Default: '0’

Poles of A(v)-H(v)*C(v) = [wl ... wn]) — Poles of observer
[-5 -2] (default) | vector

Poles of observer, specified as a vector. For incoming controllers, the block uses an observer-like
structure to ensure that the controller output tracks the current block output, u. The number of poles
must equal the dimension of the A-matrix. Poles that are too fast result in sensor noise propagation;
poles that are too slow result in the failure of the controller output to track u.

Programmatic Use

Block Parameter: vec w
Type: character vector
Values: vector

Default: '[-5 -2]'

Algorithms

The block implements
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X1 =Axq + By
up = Cyxq + Dyy
Xy = Apxg + Byy
uy = Coxg + Dyy
u=(1-2u + 2wy

0 V < Vnin

V = Vmin
A={——2 Vpin <V < Viax
Vmax — Vmin

1 V > Vpax

For example, suppose two controllers are designed at two operating points v=v;, and v=v,,. For
longer arrays of design points, the block only implements nearest neighbor designs. At any given
instant in time, the block updates three controller designs, reducing computational requirements.

As the value of the scheduling parameter varies and the index of the controllers that need to be run
changes, the block initializes the states of the oncoming controller using the self-conditioned form as
defined for the Self-Conditioned [A,B,C,D] block.

References

[1] Hyde, R. A., "H-infinity Aerospace Control Design — A VSTOL Flight Application." , Advances in
Industrial Control Series, Springer Verlag, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

1D Controller [A(v),B(v),C(v),D(v)] | 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 1D Self-Conditioned
[A(V),B(v),C(v),D(v)] | 2D Controller Blend | Self-Conditioned [A,B,C,D] | Linear Second-Order
Actuator | Nonlinear Second-Order Actuator

Introduced before R2006a



1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Implement gain-scheduled state-space controller in observer form depending on one scheduling
parameter

Library: Aerospace Blockset / GNC / Control
yy_dem
W u_dem |
u_meas

Description

The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-11.

The output from this block is the actuator demand, which you can input to an actuator block. Use this

block to implement a controller designed using H-infinity loop-shaping, one of the design methods
supported by Robust Control Toolbox.

Limitations

If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y-y_dem — Set-point error
vector

Set-point error, specified as a vector, that conforms to the dimensions of the state-space matrices.

Data Types: double

v — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double

u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.

Data Types: double
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5-10

Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(v) — A-matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. The A-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the A-matrix corresponding to the first
entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A’

B-matrix(v) — B-matrix of the state-space implementation
B (default) | array

B-matrix of the state-space implementation. The B-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the B-matrix corresponding to the first
entry of v is the identity matrix, then B(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v) — C-matrix of the state-space implementation
C (default) | array

C-matrix of the state-space implementation. The C-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. Hence, for example, if the C-matrix corresponding to the
first entry of v is the identity matrix, then C(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

F-matrix(v) — F-matrix of the state-space implementation
F (default) | array

State-feedback matrix. The F-matrix should have three dimensions, the last one corresponding to the
scheduling variable v. Hence, for example, if the F-matrix corresponding to the first entry of v is the
identity matrix, then F(:,:,1) = [1 0;0 1];.



1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Programmatic Use
Block Parameter: F
Type: character vector
Values: vector
Default: 'F'

H-matrix(v) — H-matrix of the state-space implementation
H (default) | array

Observer (output injection) matrix. The H-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. Hence, for example, if the H-matrix corresponding to the
first entry of v is the identity matrix, then H(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: H
Type: character vector
Values: vector
Default: 'H'

Scheduling variable breakpoints — Breakpoints for scheduling variable
v_vec (default) | vector

Breakpoints for the scheduling variable, specified as a vector. The length of v should be same as the
size of the third dimension of A, B, C, F, and H.

Programmatic Use

Block Parameter: AoA vec
Type: character vector
Values: vector

Default: 'v_vec'

Initial state, x_initial — Initial states
0 (default) | vector

Initial states for the controller, i.e., initial values for the state vector, x, specified as a vector. It should
have length equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x _initial
Type: character vector

Values: vector

Default: '0’

Algorithms
The block implements a gain-scheduled state-space controller defined in the following observer form:

X = (A(v) + HV)C))x + B(V)umeqs + HV)(Y = Ydem)

Ugem = F(v)x

References

[1] Hyde, R. A., "H-infinity Aerospace Control Design — A VSTOL Flight Application," Springer Verlag,
Advances in Industrial Control Series, 1995.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™

See Also

1D Controller [A(V) B( ),C(v),D(v)] | 1D Controller Blend: u=(1-L).K1.y+L.K2.y | 1D Self-Conditioned
[A(V),B(v),C(v),D(v)] | 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 3D Observer Form
[A(V),B(V),C(V) (v),H(v)] | Linear Second-Order Actuator | Nonlinear Second-Order Actuator

Introduced before R2006a
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1D Self-Conditioned [A(v),B(v),C(v),D(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Implement gain-scheduled state-space controller in self-conditioned form depending on one
scheduling parameter
Library: Aerospace Blockset / GNC / Control

W
W u_dem

u_meas

Description

The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-15.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations

« If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

» This block requires the Control System Toolbox license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.

Data Types: double

v — Scheduling variable
vector

Scheduling variable, specified as a vector, ordered according to the dimensions of the state-space
matrices.

Data Types: double

u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.

Data Types: double
Output

u_dem — Actuator demands
vector
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5-14

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(v) — A-matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. The A-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the A-matrix corresponding to the first
entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A’

B-matrix(v) — B-matrix of the state-space implementation
B (default) | array

B-matrix of the state-space implementation. The B-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the B-matrix corresponding to the first
entry of v is the identity matrix, then B(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v) — C-matrix of the state-space implementation
C (default) | array

C-matrix of the state-space implementation. The C-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the C-matrix corresponding to the first
entry of v is the identity matrix, then C(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(v) — D-matrix of the state-space implementation
D (default) | array

D-matrix of the state-space implementation. The D-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the D-matrix corresponding to the first
entry of v is the identity matrix, thenD(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: D
Type: character vector



1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Values: vector
Default: 'D'

Scheduling variable breakpoints — Breakpoints for scheduling variable
v_vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of v should be same as the size
of the third dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints v
Type: character vector

Values: vector

Default: 'v_vec'

Initial state, x_initial — Initial states
0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x_initial
Type: character vector

Values: vector

Default: '0'

Poles of A(v)-H(v)*C(v) — Desired poles
[-5 -2] (default) | vector

Desired poles of A-HC, specified as a vector. The poles are assigned to the same locations for all
values of the scheduling parameter v. Hence, the number of pole locations defined should be equal to
the length of the first dimension of the A-matrix.

Programmatic Use

Block Parameter: vec_w
Type: character vector
Values: vector

Default: '[-5 -2]'

Algorithms

The block implements a gain-scheduled state-space controller as defined by the equations:

X = A(v)x + B(v)y
u=CW)x+ D)y

in the self-conditioned form

z = (A(v) — HWv)C(v))z + (B(v) — H(v)D(V))e + H(V)Umeqs
Ugem = C(v)z + D(v)e

This block implements a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, where v is
the parameter over which A, B, C, and D are defined. This type of controller scheduling assumes that
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the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace
applications.

References

[1] Kautsky, Nichols, and Van Dooren. "Robust Pole Assignment in Linear State Feedback."
International Journal of Control, Vol. 41, Number 5, 1985, pp. 1129-1155.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™

See Also

1D Controller [A(v),B(v),C(v),D(v)] | 1D Controller Blend: u=(1-L). Kl .y+L.K2.y | 1D Observer Form
[A(V),B(v),C(v ) F(v),H(v ]|2D Self Conditioned [A(v),B(v),C(v),D(v)] | 3D Self-Conditioned
[A(V),B(v),C(v),D(v)] | Self-Conditioned [A,B,C,D] | Self-Conditioned [A,B,C,D] | Linear Second-Order
Actuator | Nonhn ear Second-Order Actuator

Introduced before R2006a
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2D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

Implement gain-scheduled state-space controller depending on two scheduling parameters

Library: Aerospace Blockset / GNC / Control
¥
w up
w2

Description

The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller, as
described in “Algorithms” on page 5-19.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations

If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.

Data Types: double

vl — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double

v2 — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double
Output

u — Actuator demands
vector
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5-18

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(vl,v2) — A-matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the A-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
A(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A’

B-matrix(vl,v2) — B-matrix of the state-space implementation
B (default) | array

B-matrix of the state-space implementation. In the case of 2-D scheduling, the B-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the B-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
B(:,:,1,1) = [1 0;0 17;.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(vl,v2) — -matrix of the state-space implementation
C (default) | array

C-matrix of the state-space implementation. In the case of 2-D scheduling, the C-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the C-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
C(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(vl,v2) — D-matrix of the state-space implementation
D (default) | array

D-matrix of the state-space implementation. In the case of 2-D scheduling, the D-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the D-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
D(:,:,1,1) = [1 0;0 1];.
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Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable
vl vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of vl should be same as the size
of the third dimension of A, B, C, and D.

Programmatic Use

Block Parameter: A0A vec
Type: character vector
Values: vector

Default: 'vl vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable
v2_vec (default) | vector

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, and D.

Programmatic Use

Block Parameter: Mach vec
Type: character vector
Values: vector

Default: 'v2 vec'

Initial state, x_initial — Initial states
0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x_initial
Type: character vector

Values: vector

Default: '0'

Algorithms

The block implements a gain-scheduled state-space controller as defined by this equation:

x = A(v)x + B(v)y
u=CW)x+ D(v)y
where v is a vector of parameters over which A, B, C, and D are defined. This type of controller

scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often
the case in aerospace applications.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

1D Controller [A(v),B(v),C(v),D(v)] | 2D Controller Blend | 2D Observer Form [A(v),B(v),C(v),F(v), H(v)]
| 2D Self-Conditioned [A(v),B(v),C(v),D(v)] | 3D Controller [A(v),B(v),C(v),D(v)] | Linear Second-Order
Actuator | Nonlinear Second-Order Actuator

Introduced before R2006a
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2D Controller Blend

Implement 2-D vector of state-space controllers by linear interpolation of their outputs

Library: Aerospace Blockset / GNC / Control
y
vl up
w2

Description

The 2D Controller Blend block implements an array of state-space controller designs. The controllers
are run in parallel, and their outputs interpolated according to the current flight condition or
operating point. The advantage of this implementation approach is that the state-space matrices A, B,
C, and D for the individual controller designs do not need to vary smoothly from one design point to
the next. The output from this block is the actuator demand, which you can input to an actuator
block.

For the 2D Controller Blend block, at any given instant in time, nine controller designs are updated.

As the value of the scheduling parameter varies and the index of the controllers that need to be run
changes, the states of the oncoming controller are initialized by using the self-conditioned form as
defined for the Self-Conditioned [A,B,C,D] block.

Limitations

This block requires the Control System Toolbox license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.

Data Types: double

vl — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double

v2 — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
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Data Types: double
Output

u — Actuator demands
vector

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(vl,v2) — A-matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. In the case of 2-D blending, the A-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the A-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
A(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(vl,v2) — B-matrix of the state-space implementation
A (default) | array

B-matrix of the state-space implementation. The B-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the B-matrix corresponding to the first
entry of v is the identity matrix, then B(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(vl,v2) — C-matrix of the state-space implementation
C (default) | array

C-matrix of the state-space implementation. The C-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the C-matrix corresponding to the first
entry of v is the identity matrix, then C(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(vl,v2) — D-matrix of the state-space implementation
C (default) | array
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D-matrix of the state-space implementation. The D-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the D-matrix corresponding to the first
entry of v is the identity matrix, thenD(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable
vl vec (default) | vector

Breakpoints for the first scheduling variable, specified as a vector. The length of vl should be same as
the size of the third dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints vl
Type: character vector

Values: vector

Default: 'vl vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable
v2_ vec (default) | vector

Breakpoints for the second scheduling variable, specified as a vector. The length of v2 should be same
as the size of the fourth dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints v2
Type: character vector

Values: vector

Default: 'v2 vec'

Initial state, x_initial — Initial states
0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x_initial
Type: character vector

Values: vector

Default: '0'

Poles of A(v)-H(v)*C(v) — Desired poles
[-5 -2] (default)

For oncoming controllers, an observer-like structure is used to ensure that the controller output
tracks the current block output, u. The poles of the observer are defined in this dialog box as a vector,
the number of poles being equal to the dimension of the A-matrix. Poles that are too fast result in
sensor noise propagation, and poles that are too slow result in the failure of the controller output to
track u.
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Programmatic Use

Block Parameter: vec w
Type: character vector
Values: vector

Default: '[-5 -2]'

References

[1] Hyde, R. A. “H-infinity Aerospace Control Design - A VSTOL Flight Application.” Springer Verlag:
Advances in Industrial Control Series, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

1D Controller Blend: u=(1-L).K1.y+L.K2.y | 2D Controller [A(v),B(v),C(v),D(v)] | 2D Observer Form
[A(V),B(v),C(v),F(v),H(v)] | 2D Self-Conditioned [A(v),B(v),C(v),D(v)] | Self-Conditioned [A,B,C,D] |
Linear Second-Order Actuator | Nonlinear Second-Order Actuator

Introduced before R2006a

5-24



2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Implement gain-scheduled state-space controller in observer form depending on two scheduling
parameters

Library: Aerospace Blockset / GNC / Control
yy_dem
il
2 u_dem [
u_meas
Description

The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-28.

The output from this block is the actuator demand, which you can input to an actuator block. Use this
block to implement a controller designed using H-infinity loop-shaping, one of the design methods
supported by Robust Control Toolbox.

Limitations

If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y-y_dem — Set-point error

vector

Set-point error, specified as a vector.
Data Types: double

vl — First scheduling variable
vector

First scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double
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u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.

Data Types: double
Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(vl,v2) — A-matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the A-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
A(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A’

B-matrix(vl,v2) — B-matrix of the state-space implementation
B (default) | array

B-matrix of the state-space implementation. In the case of 2-D scheduling, the B-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the B-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
B(:,:,1,1) = [1 0;0 11;.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(vl,v2) — C-matrix of the state-space implementation
C (default) | array

C-matrix of the state-space implementation. In the case of 2-D scheduling, the C-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the C-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
C(:,:,1,1) = [1 0;0 171;.
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Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

F-matrix(vl,v2) — F-matrix of the state-space implementation
F (default) | array

State-feedback matrix. In the case of 2-D scheduling, the F-matrix should have four dimensions, the
last two corresponding to scheduling variables v1 and v2. For example, if the F-matrix corresponding
to the first entry of vl and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: F
Type: character vector
Values: vector
Default: 'F'

H-matrix(vl,v2) — H-matrix of the state-space implementation
H (default) | array

Observer (output injection) matrix. In the case of 2-D scheduling, the H-matrix should have four
dimensions, the last two corresponding to scheduling variables vl and v2. For example, if the H-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
H(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: H
Type: character vector
Values: vector
Default: 'H'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable
vl vec (default)

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size
of the third dimension of A, B, C, F, and H.

Programmatic Use

Block Parameter: AoA vec
Type: character vector
Values: vector

Default: 'vl vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable
v2_ vec (default)

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, F, and H.

Programmatic Use
Block Parameter: Mach vec
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Type: character vector
Values: vector
Default: 'v2 vec'

Initial state, x_initial — Initial states
0 (default)

Vector of initial states for the controller,that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x_initial
Type: character vector

Values: vector

Default: '0'

Algorithms

The block implements a gain-scheduled state-space controller defined in the following observer form:

X = (A(v) + HV)C(v))X + B(V)Umeas + HV)(Y — Vdem)
Ugem = F(v)x
References

[1] Hyde, R. A.. "H-infinity Aerospace Control Design — A VSTOL Flight Application." Advances in
Industrial Control Series, Springer Verlag, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

1D Controller [A(v),B(v),C(v),D(v)] | 2D Controller [A(v),B(v),C(v),D(v)] | 2D Controller Blend | 2D Self-
Conditioned [A(v),B(v),C(v),D(v)] | 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] | Linear Second-Order
Actuator | Nonlinear Second-Order Actuator

Introduced before R2006a
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2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Implement gain-scheduled state-space controller in self-conditioned form depending on two
scheduling parameters
Library: Aerospace Blockset / GNC / Control

E)

E; u_dem [

u_meas

Description

The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-32.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations

» If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

* This block requires the Control System Toolbox license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.

Data Types: double

vl — First scheduling variable
vector

First scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.

Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.

Data Types: double

u_meas — Measured actuator position
vector
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Measured actuator position, specified as a vector.

Data Types: double
Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(vl,v2) — A-matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the A-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
A(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A’

B-matrix(vl,v2) — B-matrix of the state-space implementation
B (default) | array

B-matrix of the state-space implementation. In the case of 2-D scheduling, the B-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the B-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
B(:,:,1,1) = [1 0;0 11;.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(vl,v2) — C-matrix of the state-space implementation
C (default) | array

C-matrix of the state-space implementation. In the case of 2-D scheduling, the C-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the C-
matrix corresponding to the first entry of vl and first entry of v2 is the identity matrix, then
C(:,:,1,1) = [1 0;0 17;.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
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Default: 'C'

D-matrix(vl,v2) — D-matrix of the state-space implementation
D (default) | array

D-matrix of the state-space implementation. In the case of 2-D scheduling, the D-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the D-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
D(:,:,1,1) = [1 0;0 17;.

Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1l) breakpoints — Breakpoints for first scheduling
variable
vl vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of vl should be same as the size
of the third dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints vl
Type: character vector

Values: vector

Default: 'vl vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable
v2 vec (default) | vector

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints v2
Type: character vector

Values: vector

Default: 'v2 vec'

Initial state, x_initial — Initial states
0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x _initial
Type: character vector

Values: vector

Default: '0'

Poles of A(v)-H(v)*C(v) — Desired poles
[-5 -2] (default) | vector
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Vector of the desired poles of A-HC. Note that the poles are assigned to the same locations for all
values of the scheduling parameter, v. Hence, the number of pole locations defined should be equal to
the length of the first dimension of the A-matrix.

Programmatic Use

Block Parameter: vec w
Type: character vector
Values: vector

Default: '[-5 -2]'

Algorithms

The block implements a gain-scheduled state-space controller as defined by the equations:

X = A(v)x + B(v)y
u=CW)x+ D)y

in the self-conditioned form

z = (A(v) = HWv)C(v))z + (B(v) — H(v)D(v))e + H(V)Umeqs
Ugem = C(v)z + D(v)e

For the rationale behind this self-conditioned implementation, refer to the Self-Conditioned [A,B,C,D]
block reference. This block implements a gain-scheduled version of the Self-Conditioned [A,B,C,D]
block, v being the vector of parameters over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often
the case in aerospace applications.

References

[1] Kautsky, Nichols, and Van Dooren. "Robust Pole Assignment in Linear State Feedback,"
International Journal of Control, Vol. 41, Number 5, 1985, pp 1129-1155.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

1D Self-Conditioned [A(v),B(v),C(v),D(v)] | 2D Controller [A(v),B(v),C(v),D(v)] | 2D Controller Blend |
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 3D Self-Conditioned [A(v),B(v),C(v),D(v)] | Linear
Second-Order Actuator | Nonlinear Second-Order Actuator

Introduced before R2006a
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3D Controller [A(v),B(v),C(v),D(v)]

Implement gain-scheduled state-space controller depending on three scheduling parameters
Library: Aerospace Blockset / GNC / Control

v
wl

e
w3

Description

The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller as
described in “Algorithms” on page 5-36.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations

If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.

Data Types: double

vl — First scheduling variable
vector

First scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double

v3 — Third scheduling variable
vector
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Second scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double
Output

u — Actuator demands
vector

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(vl,v2,v3) — A matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the A-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A’

B-matrix(vl,v2,v3) — B matrix of the state-space implementation
B (default) | array

B-matrix of the state-space implementation. In the case of 3-D scheduling, the B-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the B-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(vl,v2,v3) — C matrix of the state-space implementation
C (default) | array

C-matrix of the state-space implementation. In the case of 3-D scheduling, the C-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the C-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
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Values: vector
Default: 'C'

D-matrix(vl,v2,v3) — D matrix of the state-space implementation
D (default) | array

D-matrix of the state-space implementation. In the case of 3-D scheduling, the D-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the D-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, thenD(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable
vl vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size
of the third dimension of A, B, C, and D.

Programmatic Use

Block Parameter: AoA vec
Type: character vector
Values: vector

Default: 'vl vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable
v2_vec (default) | vector

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, and D.

Programmatic Use

Block Parameter: AoS vec
Type: character vector
Values: vector

Default: 'v2 vec'

Third scheduling variable (v3) breakpoints — Breakpoints for third scheduling
variable
v3_vec (default) | vector

Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the
size of the fifth dimension of A, B, C, and D.

Programmatic Use

Block Parameter: Mach vec
Type: character vector
Values: vector

Default: 'v3 vec'
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Initial state, x_initial — Initial states
0 (default) | vector

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length
equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x_initial
Type: character vector

Values: vector

Default: '0'

Algorithms

The block implements a gain-scheduled state-space controller as defined by this equation:

x = A(v)x + B(v)y
u=CW)x+ D)y

where v is a vector of parameters over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often
the case in aerospace applications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

1D Controller [A(v),B(v),C(v),D(v)] | 2D Controller [A(v),B(v),C(v),D(v)] | 3D Observer Form
[A(V),B(v),C(v),F(v),H(v)] | 3D Self-Conditioned [A(v),B(v),C(v),D(v)] | Linear Second-Order Actuator |
Nonlinear Second-Order Actuator

Introduced before R2006a
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3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Implement gain-scheduled state-space controller in observer form depending on three scheduling

parameters
Library: Aerospace Blockset / GNC / Control
wy_dem
i
w2 u_dem
w3
u_meas
Description

The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space
controller defined in “Algorithms” on page 5-28.

The main application of this block is to implement a controller designed using H-infinity loop-shaping.
Use this block to implement a controller designed using H-infinity loop-shaping, one of the design
methods supported by Robust Control Toolbox.

Limitations

If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space

matrices are not interpolated out of range.

Ports
Input

y-y_dem — Set-point error
vector

Set-point error, specified as a vector.

Data Types: double

vl — First scheduling variable
vector

First scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double
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v3 — Third scheduling variable
vector

Third scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.

Data Types: double

u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.

Data Types: double
Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(vl,v2,v3) — A-matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the A-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A’

B-matrix(vl,v2,v3) — B-matrix of the state-space implementation
B (default) | array

B-matrix of the state-space implementation. In the case of 3-D scheduling, the B-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the B-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(vl,v2,v3) — C-matrix of the state-space implementation
C (default) | array
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C-matrix of the state-space implementation. In the case of 3-D scheduling, the C-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the C-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

F-matrix(vl,v2,v3) — F-matrix of the state-space implementation
F (default) | array

State-feedback matrix. In the case of 3-D scheduling, the F-matrix should have five dimensions, the
last three corresponding to scheduling variables v1, v2, and v3. For example, if the F-matrix
corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: F
Type: character vector
Values: vector
Default: 'F'

H-matrix(vl,v2,v3) — H-matrix of the state-space implementation
H (default) | array

Observer (output injection) matrix. In the case of 3-D scheduling, the H-matrix should have five
dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if the
H-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: H
Type: character vector
Values: vector
Default: 'H'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable
vl vec (default)

Vector of the breakpoints for the first scheduling variable. The length of vl should be same as the size
of the third dimension of A, B, C, F, and H.

Programmatic Use

Block Parameter: AoA vec
Type: character vector
Values: vector

Default: 'vl vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling

variable
v2 vec (default)
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Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, F, and H.

Programmatic Use

Block Parameter: AoS vec
Type: character vector
Values: vector

Default: 'v2 vec'

Third scheduling variable (v3) breakpoints — Breakpoints for third scheduling
variable
v3 vec (default)

Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the
size of the fifth dimension of A, B, C, F, and H.

Programmatic Use

Block Parameter: Mach vec
Type: character vector
Values: vector

Default: 'v3 vec'

Initial state, x_initial — Initial states
0 (default)

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x _initial
Type: character vector

Values: vector

Default: '0'

Algorithms

The block implements gain-scheduled state-space controller as defined by these equations:

X = (A(v) + HV)C(V))x + B(V)Umeas + HV)(Y = Ydem)
Udem = F(v)x
References

[1] Hyde, R. A. "H-infinity Aerospace Control Design — A VSTOL Flight Application." Advances in
Industrial Control Series, Springer Verlag, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also

1D Controller [A(v),B(v),C(v),D(v)] | 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 3D Controller
[A(V),B(v),C(v),D(v)] | 3D Self-Conditioned [A(v),B(v),C(v),D(v)] | Linear Second-Order Actuator |
Nonlinear Second-Order Actuator

Introduced before R2006a
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3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Implement gain-scheduled state-space controller in self-conditioned form depending on two
scheduling parameters
Library: Aerospace Blockset / GNC / Control

Wi u_dem

Description

The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-45.

If the scheduling parameter inputs to the block go out of range, then they are clipped. The state-
space matrices are not interpolated out of range.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations

This block requires the Control System Toolbox license.

Ports
Input

y — Aircraft measurements

vector

Aircraft measurements, specified as a vector.
Data Types: double

vl — First scheduling variable
vector

First scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.

Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.

Data Types: double
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v3 — Third scheduling variable
vector

Third scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.

Data Types: double

u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.

Data Types: double
Output

Port_1 — Actuator demands
vector

Actuator demands, specified as a vector.

Data Types: double

Parameters

A-matrix(vl,v2,v3) — A-matrix of the state-space implementation
A (default) | array

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the A-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A’

B-matrix(vl,v2,v3) — B-matrix of the state-space implementation
B (default) | array

B-matrix of the state-space implementation. In the case of 3-D scheduling, the B-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the B-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(vl,v2,v3) — C-matrix of the state-space implementation
C (default) | array
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C-matrix of the state-space implementation. In the case of 3-D scheduling, the C-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the C-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(vl,v2,v3) — D-matrix of the state-space implementation
D (default) | array

D-matrix of the state-space implementation. In the case of 3-D scheduling, the D-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the D-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, thenD(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable
vl vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of vl should be same as the size
of the third dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints vl
Type: character vector

Values: vector

Default: 'vl vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable
v2_vec (default) | vector

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints v2
Type: character vector

Values: vector

Default: 'v2 vec'

Third scheduling variable (v3) breakpoints — Breakpoints for third scheduling
variable
v3_vec (default) | vector
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Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the
size of the fifth dimension of A, B, C, and D.

Programmatic Use

Block Parameter: breakpoints v3
Type: character vector

Values: vector

Default: 'v3 vec'

Initial state, x_initial — Initial states
0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use

Block Parameter: x_initial
Type: character vector

Values: vector

Default: '0'

Poles of A(v)-H(v)*C(v) — Desired poles
[-5 -2] (default) | vector

Vector of the desired poles of A-HC. Note that the poles are assigned to the same locations for all
values of the scheduling parameter v. Hence the number of pole locations defined should be equal to
the length of the first dimension of the A-matrix.

Programmatic Use

Block Parameter: vec w
Type: character vector
Values: vector

Default: '[-5 -2]'

Algorithms

The block implements a gain-scheduled state-space controller as defined by the equations:

x = A(v)x + B(v)y
u=CW)x+ D)y

in the self-conditioned form

Z = (A(v) — HWV)C(v))z + (B(v) — H(v)D(v))e + H(V)Umeqs
Udgem = C(v)z + D(v)e

For the rationale behind this self-conditioned implementation, refer to the Self-Conditioned [A,B,C,D]
block reference. These blocks implement a gain-scheduled version of the Self-Conditioned [A,B,C,D]
block, v being the vector of parameters over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often
the case in aerospace applications.
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References

[1] Kautsky, Nichols, and Van Dooren. "Robust Pole Assignment in Linear State Feedback."
International Journal of Control, Vol. 41, Number 5, 1985, pp. 1129-1155.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

1D Self-Conditioned [A(v),B(v),C(v),D(v)] | 2D Self-Conditioned [A(v),B(v),C(v),D(v)] | 3D Controller
[A(V),B(v),C(v),D(v)] | 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] | Linear Second-Order Actuator |
Nonlinear Second-Order Actuator

Introduced before R2006a
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3DoF Animation

Create 3-D MATLAB Graphics animation of three-degrees-of-freedom object
Library: Aerospace Blockset / Animation / MATLAB-Based Animation

b
p LS

= *
a a

]

L.

LY.

Description

The 3DoF Animation block displays a 3-D animated view of a three-degrees-of-freedom (3DoF) craft,
its trajectory, and its target using MATLAB Graphics.

The 3DoF Animation block uses input values and dialog parameters to create and display the
animation.

This block does not produce deployable code, but you can use it with Simulink Coder external mode
as a SimViewingDevice.

Ports
Input

Xx:zy — Target downrange position and altitude (positive down)
two-element vector

Downrange position and altitude (positive down) of the target, specified as a two-element vector.

Data Types: double

X.Z, — Craft downrange position and altitude (positive down)
two-element vector

Downrange position and altitude (positive down) of the craft, specified as a two-element vector.

Data Types: double

0 — Attitude of craft
1-by-1 scalar

Attitude of the craft, specified as 1-by-1 scalar, in radians.

Data Types: double

Parameters

Axes limits [xmin xmax ymin ymax zmin zmax] — Axes limits
[0 5000 -2000 2000 -5050 -3050] (default) | six-element vector
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Three-dimensional space to be viewed, specified as a six-element vector.

Programmatic Use

Block Parameter: ul

Type: character vector

Values: six-element vector

Default: ' [0 5000 -2000 2000 -5050 -3050]'

Time interval between updates — Time interval
0.05 (default) | scalar

Time interval at which the animation is redrawn, specified as a double scalar.

Programmatic Use
Block Parameter: u2
Type: character vector
Values: double scalar
Default: '0.05"

Size of craft displayed — Scale factor
1.0 (default) | scalar

Scale factor to adjust the size of the craft and target, specified as a double scalar.

Programmatic Use
Block Parameter: u3
Type: character vector
Values: double scalar
Default: '1.0'

Enter view — Entrance view
Fixed position (default) | Cockpit | Fly alongside

Preset entrance views, specified as:
* Fixed position

* Cockpit

* Fly alongside

These preset views are specified by MATLAB Graphics parameters CameraTarget and
CameraUpVector for the figure axes.

Tip To customize the position and field of view for the selected view, use the Position of camera and
View angle parameters.

Programmatic Use

Block Parameter: u5

Type: character vector

Values: Fixed position | Cockpit|Fly alongside
Default: 'Fixed position'

Position of camera [xc yc zc] — Camera position
[2000 500 -3150] (default) | three-element vector
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Camera position, specified using the MATLAB Graphics parameter CameraPosition for the figure axes
as a three-element vector. Used in all cases except for the Cockpit view.

Programmatic Use

Block Parameter: u6

Type: character vector

Values: three-element vector
Default: ' [2000 500 -3150]"

View angle — View angle
10 (default) | scalar

View angle, specified as MATLAB Graphics parameter CameraViewAngle for the figure axes in
degrees as a double scalar.

Programmatic Use
Block Parameter: u7
Type: character vector
Values: double scalar
Default: '10'

Enable animation — Display animation
on (default) | of f

To display the animation during the simulation, select this check box. If not selected, the animation is
not displayed.

Programmatic Use
Block Parameter: u8
Type: character vector
Values: on | of f
Default: 'on'

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DoF Animation | FlightGear Preconfigured 6DoF Animation | CameraPosition | CameraViewAngle

Topics
“Designing a Guidance System in MATLAB and Simulink”

Introduced before R2006a
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3DOF (Body Axes)

Implement three-degrees-of-freedom equations of motion with respect to body axes
Library: Aerospace Blockset / Equations of Motion / 3DOF

yF M Fixed orap
Mass q (rad/s) >

( _’dqm (radis?) P
= R T m) b
4

b

Body U w {mis)
AM (-m)

AL (mis?)

Description

The 3DOF (Body Axes) block implements three-degrees-of-freedom equations of motion with respect
to body axes. It considers the rotation in the vertical plane of a body-fixed coordinate frame about a
flat Earth reference frame. For more information about the rotation and equations of motion, see
“Algorithms” on page 5-56.

Ports
Input

F, — Applied force along x-axis
scalar

Applied force along the body x-axis, specified as a scalar, in the units selected in Units.

Data Types: double

F, — Applied force along z-axis
scalar

Applied force along the body z-axis, specified as a scalar.

Data Types: double

M — Applied pitching moment
scalar

Applied pitching moment, specified as a scalar.

Data Types: double

g — Gravity
scalar

Gravity, specified as a scalar.

Dependencies

To enable this port, set Gravity source to External.

Data Types: double
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Output

0 — Pitch altitude
scalar

Pitch attitude, within =pi, returned as a scalar, in radians.

Data Types: double

q — Pitch angular rate
scalar

Pitch angular rate, returned as a scalar, in radians per second.

Data Types: double

dq/dt — Pitch angular acceleration
scalar

Pitch angular acceleration, returned as a scalar, in radians per second squared.

Data Types: double

X.Z. — Location of body
two-element vector

Location of the body in the flat Earth reference frame, (Xe, Ze), returned as a two-element vector.

Data Types: double

U w — Velocity of body
two-element vector

Velocity of the body resolved into the body-fixed coordinate frame, (u, w), returned as a two-element
vector.

Data Types: double

A,,A,, — Acceleration of body
two-element vector

Acceleration of the body with respect to the body-fixed coordinate frame, (Ax, Az), returned as a two-
element vector.

Data Types: double

A,.A,. — Acceleration of body
two-element vector

Accelerations of the body with respect to the inertial (flat Earth) coordinate frame, returned as a two-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this port, select the Include inertial acceleration check box.

Data Types: double
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Parameters

Main

Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity |[Position [Mass Inertia
Metric Newton Newton- Meters per second |Meters per | Meters Kilogram |Kilogram
(MKS) meter squared second meter
squared
English Pound Foot-pound |Feet per second Feet per |Feet Slug Slug foot
(Velocity squared second squared
in ft/s)
English Pound Foot-pound |Feet per second Knots Feet Slug Slug foot
(Velocity squared squared
in kts)

Programmatic Use

Block Parameter: units
Type: character vector

Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Axes — Body or wind axes
Body (default) | Wind

Body or wind axes, specified as Wind or Body

Programmatic Use

Block Parameter: axes
Type: character vector
Values: Wind | Body
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Default: Body

Mass Type — Mass type
Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.

Mass Type

Description

Default for

Fixed

Mass is constant throughout the
simulation.

3DOF (Body Axes)
* 3DOF (Wind Axes)

Simple Variable

Mass and inertia vary linearly as
a function of mass rate.

Simple Variable Mass 3DOF
(Body Axes)

* Simple Variable Mass 3DOF
(Wind Axes)
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Mass Type

Description

Default for

Custom Variable

Mass and inertia variations are
customizable.

Custom Variable Mass 3DOF
(Body Axes)

e Custom Variable Mass 3DOF
(Wind Axes)

The Fixed selection conforms to the previously described equations of motion.

Programmatic Use
Block Parameter: mtype
Type: character vector

Values: Fixed | Simple Variable | Custom Variable

Default: 'Fixed'

Initial velocity — Initial velocity of body

100 (default) | scalar

Initial velocity of the body, (V;), specified as a scalar.

Programmatic Use

Block Parameter: v_ini
Type: character vector
Values: '100"' | scalar
Default: '100'

Initial body attitude — Initial pitch altitude

0 (default) | scalar

Initial pitch attitude of the body, (8,), specified as a scalar.

Programmatic Use

Block Parameter: theta ini
Type: character vector

Values: 'Q' | scalar

Default: '0'

Initial body rotation rate — Initial pitch rotation rate

0 (default) | scalar

Initial pitch rotation rate, (qo), specified as a scalar.

Programmatic Use

Block Parameter: g ini
Type: character vector
Values: '0Q' | scalar
Default: '0'

Initial incidence — Initial angle

0 (default) | scalar

Initial angle between the velocity vector and the body, (a;), specified as a scalar.

Programmatic Use
Block Parameter: alpha_ini
Type: character vector
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Values: '0' | scalar
Default: '0'

Initial position (x,z) — Initial location
[0 O] (default) | two-element vector

Initial location of the body in the flat Earth reference frame, specified as a two-element vector.

Programmatic Use

Block Parameter: pos ini

Type: character vector

Values: '[0 O] ' | two-element vector
Default: ' [0 0]

Initial mass — Initial mass
1.0 (default) | scalar

Initial mass of the rigid body, specified as a scalar.

Programmatic Use
Block Parameter: mass
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Inertia — Inertia
1.0 (default) | scalar

Inertia of the body, specified as a scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use
Block Parameter: Iyy
Type: character vector
Values: '1.0"' | scalar
Default: '1.0'

Gravity Source — Gravity source
Internal (default) | External

Gravity source, specified as:

External Variable gravity input to block

Internal Constant gravity specified in mask

Programmatic Use

Block Parameter: g _in

Type: character vector

Values: 'Internal' | 'External’
Default: 'Internal’

Acceleration due to gravity — Gravity source
9.81 (default) | scalar
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Acceleration due to gravity, specified as a double scalar and used if internal gravity source is
selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Dependencies
* To enable this parameter, set Gravity Source to Internal.

Programmatic Use
Block Parameter: g
Type: character vector
Values: '9.81' | scalar
Default: '9.81"'

Include inertial acceleration — Include inertial acceleration port
off (default) | on

Select this check box to add an inertial acceleration in flat Earth frame output port. You typically
connect this signal to the accelerometer.

Dependencies

To enable the A,.A,e port, select this parameter.

Programmatic Use

Block Parameter: abi flag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

* The number of names must match the number of states, as shown for each item, or be empty. Set
all or none of the block states.

» To assign names to single-variable states, enter unique names between quotes, for example,
Or n q n .

q

» To assign names to two-variable states, enter a comma-separated list surrounded by braces, for
example, {'Xe', 'Ze'}.

+ If a state parameter is empty (' '), no name is assigned.

* To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array of character vectors, or string.

Velocity: e.g., {'u, 'w'} — Velocity state name
"' (default) | comma-separated list surrounded by braces

Velocity state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: vel statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’
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Position: e.g., {'Xe', 'Ze'} — Position state name
"' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: pos statename

Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’

Pitch angular rate e.g., 'q' — Pitch angular rate state name
"' (default)

Pitch angular rate state name, specified as a character vector or string.

Programmatic Use

Block Parameter: q statename
Type: character vector | string
Values: '' | scalar

Default: '’

Pitch attitude: e.g., 'theta' — Pitch attitude state name
"' (default)

Pitch attitude state name, specified as a character vector or string.

Programmatic Use

Block Parameter: theta statename
Type: character vector | string

Values: '

Default: '’

Algorithms

The block considers the rotation in the vertical plane of a body-fixed coordinate frame about a flat
Earth reference frame.

Flat Earth )
reference frame
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The equations of motion are

Ap=u=Ap—qw
Agh =W = Agpe + qu

F

A = mx — gsiné
F

Ay = WZ + gcos@

X, = ucos@ + wsinf

Z, = — usinf + wcosf
M

. _ My

q__
Lyy

0 =q

where the applied forces are assumed to act at the center of gravity of the body. Input variables are

F,, F,, M,. g is an optional input variable.

Compatibility Considerations

3DOF (Body Axes) Block Changes
Behavior changed in R2021b

The 3DOF equations of motion have been updated. Existing models created prior to R2021b that
contain 3DOF equations of motion blocks continue to run. If you replace a pre-R2021b version of a
3DOF equation of motion block with an R2021b or later version, your updated model might have a
higher tendency for algebraic loops. For an example of how to remove algebraic loops using unit
delays, see “Remove Algebraic Loops”. For further information about algebraic loops, see “Identify

Algebraic Loops in Your Model”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

3DOF (Wind Axes) | 4th Order Point Mass (Longitudinal) | Custom Variable Mass 3DOF (Body Axes) |
Custom Variable Mass 3DOF (Wind Axes) | Simple Variable Mass 3DOF (Body Axes) | Simple Variable

Mass 3DOF (Wind Axes)

Topics

“Designing a Guidance System in MATLAB and Simulink”

Introduced in R2006a
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3DOF (Wind Axes)

Implement three-degrees-of-freedom equations of motion with respect to wind axes
Library: Aerospace Blockset / Equations of Motion / 3DOF

v (rad)
p AL e

q iradis)

( i it (rclis”)
yFm X_2Z_(m)
i 2.

v, (mis)

=7
B

Wind

A e G

A A (mis?)
Anem) we=
a(rad)

Description

The 3DOF (Wind Axes) block implements three-degrees-of-freedom equations of motion with respect
to wind axes. It considers the rotation in the vertical plane of a wind-fixed coordinate frame about a
flat Earth reference frame. For more information about the rotation and equations of motion, see
“Algorithms” on page 5-64.

Limitations

The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports
Input

F, — Applied force along wind x-axis
scalar

Applied force along the wind x-axis, specified as a scalar, in the units selected in Units.

Data Types: double

F, — Applied force along wind z-axis
scalar

Applied force along the wind z-axis, specified as a scalar.

Data Types: double

M — Applied pitching moment
scalar

Applied pitching moment, specified as a scalar.

Data Types: double

g — Gravity
scalar

Gravity, specified as a scalar.



3DOF (Wind Axes)

Dependencies

To enable this port, set Gravity source to External.

Data Types: double
Output

Y — Flight path angle
scalar
Flight path angle, within +pi, returned as a scalar, in radians.

Data Types: double

g — Pitch angular rate
scalar

Pitch angular rate, returned as a scalar, in radians per second.

Data Types: double

dgq/dt — Pitch angular acceleration
scalar

Pitch angular acceleration, returned as a scalar, in radians per second squared.

Data Types: double

X.Z. — Location of body
two-element vector

Location of the body in the flat Earth reference frame, (Xe, Ze), returned as a two-element vector.

Data Types: double

V,, — Velocity in wind-fixed frame
two-element vector

Velocity of the body resolved into the wind-fixed coordinate frame, (V, 0), returned as a two-element
vector.

Data Types: double

A,,A,, — Acceleration of body
two-element vector

Acceleration of the body with respect to the body-fixed coordinate frame, (Ax, Az), returned as a two-
element vector.

Data Types: double

a — Angle of attack
scalar

Angle of attack, returned as a scalar, in radians.

Data Types: double
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A,.A,. — Acceleration of body
two-element vector

Accelerations of the body with respect to the inertial (flat Earth) coordinate frame, returned as a two-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this port, select the Include inertial acceleration check box.

Data Types: double

Parameters
Main

Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) |English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity |[Position (Mass Inertia
Metric Newton Newton- Meters per second |Meters per | Meters Kilogram |Kilogram
(MKS) meter squared second meter
squared
English Pound Foot-pound |Feet per second Feet per |Feet Slug Slug foot
(Velocity squared second squared
in ft/s)
English Pound Foot-pound |Feet per second Knots Feet Slug Slug foot
(Velocity squared squared
in kts)
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Programmatic Use

Block Parameter: units

Type: character vector

Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Axes — Body or wind axes
Wind (default) | Body

Body or wind axes, specified as Wind or Body

Programmatic Use
Block Parameter: axes
Type: character vector
Values: Wind | Body
Default: Wind

Mass type — Mass type
Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.




3DOF (Wind Axes)

Mass Type Description Default for
Fixed Mass is constant throughout the |« 3DOF (Body Axes)
simulation. e 3DOF (Wll’ld AXGS)
Simple Variable Mass and inertia vary linearly as|* Simple Variable Mass 3DOF
a function of mass rate. (Body Axes)
* Simple Variable Mass 3DOF
(Wind Axes)
Custom Variable Mass and inertia variations are |¢ Custom Variable Mass 3DOF
customizable. (Body Axes)
* Custom Variable Mass 3DOF
(Wind Axes)

The Fixed selection conforms to the previously described equations of motion.

Programmatic Use

Block Parameter: mtype

Type: character vector

Values: Fixed | Simple Variable | Custom Variable
Default: 'Fixed'

Initial airspeed — Initial speed
100 (default) | scalar

Initial speed of the body, (V;), specified as a scalar.

Programmatic Use

Block Parameter: V_ini
Type: character vector
Values: '100' | scalar
Default: '100'

Initial flight path angle — Initial flight path angle
0 (default) | scalar

Initial flight path angle of the body, (y,), specified as a scalar.

Programmatic Use

Block Parameter: gamma_ini
Type: character vector

Values: '0Q' | scalar

Default: '0'

Initial body rotation rate — Initial pitch rotation rate
0 (default) | scalar

Initial pitch rotation rate, (qo), specified as a scalar.

Programmatic Use

Block Parameter: q_ini
Type: character vector
Values: '0Q' | scalar
Default: '0'
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Initial incidence — Initial angle
0 (default) | scalar

Initial angle between the velocity vector and the body, (a;), specified as a scalar.

Programmatic Use

Block Parameter: alpha_ini
Type: character vector

Values: '0Q' | scalar

Default: '0'

Initial position (x,z) — Initial location
[0 O] (default) | two-element vector

Initial location of the body in the flat Earth reference frame, specified as a two-element vector.

Programmatic Use

Block Parameter: pos_ini

Type: character vector

Values: '[0 0] ' | two-element vector
Default: '[0 O]

Initial mass — Initial mass
1.0 (default) | scalar

Initial mass of the rigid body, specified as a scalar.

Programmatic Use
Block Parameter: mass
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Inertia body axes — Inertia of body
1.0 (default) | scalar

Inertia of the body, specified as a scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use
Block Parameter: Iyy
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Gravity Source — Gravity source
Internal (default) | External

Gravity source, specified as:

External Variable gravity input to block

Internal Constant gravity specified in mask
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Programmatic Use

Block Parameter: g in

Type: character vector

Values: 'Internal' | 'External’
Default: 'Internal’

Acceleration due to gravity — Gravity source
9.81 (default) | scalar

Acceleration due to gravity, specified as a double scalar and used if internal gravity source is
selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Dependencies
* To enable this parameter, set Gravity Source to Internal.

Programmatic Use
Block Parameter: g
Type: character vector
Values: '9.81"' | scalar
Default: '9.81"'

Include inertial acceleration — Include inertial acceleration port
off (default) | on

Select this check box to add an inertial acceleration in flat Earth frame output port. You typically
connect this signal to the accelerometer.

Dependencies

To enable the A, A, port, select this parameter.

Programmatic Use

Block Parameter: abi flag
Type: character vector
Values: 'off' | 'on'
Default: 'off"'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

* The number of names must match the number of states, as shown for each item, or be empty. Set
all or none of the block states.

» To assign names to single-variable states, enter unique names between quotes, for example, 'q’
Or n q n .

+ To assign names to two-variable states, enter a comma-separated list surrounded by braces, for
example, {'Xe', 'Ze'}.

+ If a state parameter is empty (' '), no name is assigned.

* To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array of character vectors, or string.

Velocity: e.g., 'V' — Velocity state name
"' (default) | character vector

5-63



5 Blocks

5-64

Velocity state name, specified as a character vector or string.

Programmatic Use

Block Parameter: V_statename
Type: character vector | string
Values: '' | scalar

Default: '’

Position: e.g., {'Xe', 'Ze'} — Position state name
"' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: pos statename

Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’

Body rotation rate: e.g., 'q' — Body rotation state name
"' (default) | scalar

Body rotation rate state names, specified as a character vector or string.

Programmatic Use

Block Parameter: g statename
Type: character vector | string
Values: '' | scalar

Default: '’

Flight path angle: e.g., 'gamma' — Flight path angle state name
"' (default)

Flight path angle state name, specified as a character vector or string.

Programmatic Use

Block Parameter: gamma_statename
Type: character vector | string

Values: '' | scalar

Default: '’

Incidence angle e.g., 'alpha' — Incidence angle state name
"' (default) | scalar

Incidence angle state name, specified as a character vector or string.

Programmatic Use
Block Parameter: alpha statename
Type: character vector | string

Values: '' | scalar
Default: '’
Algorithms

The block considers the rotation in the vertical plane of a wind-fixed coordinate frame about a flat
Earth reference frame.



3DOF (Wind Axes)

‘Wind-Fixed

Reference Frame

Flat Earth T 7
Reference F_rame'"' :

The equations of motion are

Ayp = Aye — qVsina
Ay = Ay + qVeosa

sina

cosa —

Fr,
- +gcosy

Fy .
Aye = oo gsiny

Fx . . FZ
Aze = [m — gsmy|sina + m + gcosy|cosa

v=Ex_ g
= - —gsiny

X, = Vcosy
Ze = - Vsiny

. F, g
a= m— + VCOSV +q

where the applied forces are assumed to act at the center of gravity of the body. Input variables are
wind-axes forces F, and F, and body moment M,. g is an optional input variable.

Compatibility Considerations

3DOF (Wind Axes) Block Changes
Behavior changed in R2021b

The 3DOF equations of motion have been updated. Existing models created prior to R2021b that
contain 3DOF equations of motion blocks continue to run. If you replace a pre-R2021b version of a
3DOF equation of motion block with an R2021b or later version, your updated model might have a
higher tendency for algebraic loops. For an example of how to remove algebraic loops using unit
delays, see “Remove Algebraic Loops”. For further information about algebraic loops, see “Identify
Algebraic Loops in Your Model”.
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References

[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation. New York: John Wiley & Sons,
1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

3DOF (Body Axes) | 4th Order Point Mass (Longitudinal) | Custom Variable Mass 3DOF (Body Axes) |
Custom Variable Mass 3DOF (Wind Axes) | Simple Variable Mass 3DOF (Body Axes) | Simple Variable
Mass 3DOF (Wind Axes)

Introduced in R2006a
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3x3 Cross Product

Calculate cross product of two 3-by-1 vectors
Library: Aerospace Blockset / Utilities / Math Operations

A Smss

Frodust &
B C=4AxE

T

Description

The 3x3 Cross Product block computes cross (or vector) product of two vectors, A and B. The block
generates a third vector, C, in a direction normal to the plane containing A and B, with magnitude
equal to the product of the lengths of A and B multiplied by the sine of the angle between them. The
direction of C follows the right-hand rule in turning from A to B. For related equations, see
“Algorithms” on page 5-67.

Ports

Input

A — First cross product input
3-by-1 vector

First cross product input, specified as a vector.
Example: [10 2 3]
Data Types: double

B — Second cross product input
3-by-1 vector

Second cross product input, specified as a vector.
Example: [10 2 3]
Data Types: double

Output

C — Cross product
3-by-1 vector

Cross product, output as a vector.

Data Types: double

Algorithms

The equations used to calculate A, B, and C are:
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A=aqii+ apj+aszk
B = byi + byj + b3k
ijk
C=AXxB=|q az a3
by by b3
= (azb3 — agby)i + (azby — arb3)j + (a1by — azb)k

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Create 3x3 Matrix | Adjoint of 3x3 Matrix | Determinant of 3x3 Matrix | Invert 3x3 Matrix

Introduced before R2006a
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4th Order Point Mass (Longitudinal)

Calculate fourth-order point mass
Library: Aerospace Blockset / Equations of Motion / Point Mass

v {rad}
F M) 4th Order
PointMass
F gy i)
F (M) Longitudinal

XJD(m]

Description

The 4th Order Point Mass (Longitudinal) block performs the calculations for the translational motion
of a single point mass or multiple point masses. For more information on the system for the
translational motion of a single point mass or multiple mass, see “Algorithms” on page 5-72.

The 4th Order Point Mass (Longitudinal) block port labels change based on the input and output units
selected from the Units list.

Limitations

The flat Earth reference frame is considered inertial, an approximation that allows the forces due to
the Earth's motion relative to the “fixed stars” to be neglected.

Ports
Input

Port_1 — Force in x-axis
scalar | array

Force in x-axis, specified as a scalar or array, in selected units.

Data Types: double

Port_2 — Force in z-axis
scalar | array

Force in z-axis, specified as a scalar or array, in selected units.

Data Types: double
Output

Port_1 — Flight path angle
scalar | array

Flight path angle, returned as a scalar or array, in radians.

Data Types: double

Port_2 — Airspeed
scalar | array
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Airspeed, returned as a scalar or array, in selected units.

Data Types: double

Port_3 — Downrange or amount traveled east
scalar | array

Downrange or amount traveled east, returned as a scalar or array, in selected units.

Data Types: double

Port_4 — Altitude or amount traveled up
scalar | array

Altitude or amount traveled up, returned as a scalar or array, in selected units.
Data Types: double
Parameters

Units — Units
Metric (MKS) (default) | English (Velocity in ft/s) |English (Velocity in kts)

Input and output units, specified as:

Units Forces Velocity Position [Mass
Metric (MKS) newtons meters per second meters kilograms
English (Velocity in |pounds feet per second feet slugs
ft/s)
Eng}ish (Velocity in |pounds knots feet slugs

ts

Programmatic Use

Block Parameter: units

Type: character vector

Values: 'Metric (MKS)' | 'English (Velocity in ft/s)'| 'English (Velocity in
kts)'

Default: 'Metric (MKS)'

Reference frame orientation — Units
[North East Down] (default) | [East North Down]

Input and output units, specified as:

Units Forces Velocity Position [Mass
Metric (MKS) Newton Meters per second Meters  |kilogram
English (Velocity in [Pound Feet per second Feet slugs
ft/s)

English (Velocity in |[Pound Knots Feet slugs
kts)
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Programmatic Use

Block Parameter: units

Type: character vector

Values: 'Metric (MKS)' | 'English (Velocity in ft/s)'| 'English (Velocity in
kts)'

Default: 'Metric (MKS)'

Initial flight path angle — Initial flight path angle
0 (default) | scalar | vector

Initial flight path angle of the point mass(es), specified as a scalar or vector.

Programmatic Use

Block Parameter: gamma0
Type: character vector
Values: scalar | vector
Default: '0’

Initial airspeed — Initial airspeed
100 (default) | scalar | vector

Initial airspeed of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: VO
Type: character vector
Values: scalar | vector
Default: '100"

Initial downrange [East] — Initial downrange
0 (default) | scalar | vector

Initial downrange of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: x0
Type: character vector
Values: scalar | vector
Default: '0'

Initial altitude [Up] — Initial altitude of point masses
0 (default) | scalar | vector

Initial altitude of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: h0
Type: character vector
Values: scalar | vector
Default: '0'

Initial mass — Point mass
1.0 (default) | scalar | vector

Mass of the point mass(es), specified as a scalar or vector.

5-71



5 Blocks

5-72

Programmatic Use

Block Parameter: mass0
Type: character vector
Values: scalar | vector
Default: '1.0'

Algorithms

» Fast

The translational motions of the point mass [Xg,Xy,]" are functions of airspeed (V) and flight path
angle (),
F, = mv
F,=mVy
XEast = Vcosy
X up = Vsiny
where the applied forces [F,F,]T are in a system defined as follows: x-axis is in the direction of vehicle

velocity relative to air, z-axis is upward, and y-axis completes the right-handed frame. The mass of the
body m is assumed constant.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Simple Variable Mass 3DOF (Body Axes) | Custom Variable Mass 3DOF (Wind Axes) | 4th Order Point
Mass Forces (Longitudinal) | 3DOF (Body Axes) | 3DOF (Wind Axes) | 6th Order Point Mass
(Coordinated Flight) | Custom Variable Mass 3DOF (Body Axes) | 6th Order Point Mass Forces
(Coordinated Flight) | Simple Variable Mass 3DOF (Wind Axes)



4th Order Point Mass (Longitudinal)

Introduced before R2006a
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4th Order Point Mass Forces (Longitudinal)

Calculate forces used by fourth-order point mass
Library: Aerospace Blockset / Equations of Motion / Point Mass
b [T

HDrag

T athorder R P
Weight  Point Mass

Thrust

u
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p
3
)‘F Farces
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2

Description

The 4th Order Point Mass Forces (Longitudinal) block calculates the applied forces for a single point
mass or multiple point masses. For more information on the system for the applied forces, see
“Algorithms” on page 5-76.

Limitations

The flat Earth reference frame is considered inertial, an approximation that allows the forces due to
the Earth motion relative to the "fixed stars" to be neglected.

Ports
Input

Lift — Lift
scalar | array

Lift, specified as a scalar or array, in units of force.

Data Types: double

Drag — Drag
scalar | array

Drag, specified as a scalar or array, in units of force.

Data Types: double

Weight — Weight
scalar | array

Weight, specified as a scalar or array, in units of force.

Data Types: double

Thrust — Thrust
scalar | array

Thrust, specified as a scalar or array, in units of force.



4th Order Point Mass Forces (Longitudinal)

Data Types: double

¥ — Flight path angle
scalar | array

Flight path angle, specified as a scalar or array, in radians.

Data Types: double

p — Bank angle
scalar | array

Bank angle, specified as a scalar or array, in radians.

Data Types: double

a — Angle of attack
scalar | array

Angle of attack, specified as a scalar or array, in radians.

Data Types: double
Output

F, — Force in x-axis
scalar | array

Force in x-axis, returned as a scalar or array, in units of force.

Data Types: double

F, — Force in z-axis
scalar | array

Force in z-axis, returned as a scalar or array, in units of force.

Data Types: double
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Algorithms

# Fast

The applied forces [F, F,]Tare in a system defined as follows: x-axis is in the direction of vehicle
velocity relative to air, z-axis is upward, and y-axis completes the right-handed frame. They are
functions of lift (L), drag (D), thrust (T), weight (W), flight path angle (y), angle of attack (a), and
bank angle ().

F, = (L + Tsina)cosu — Wcosy
F, =Tcosa — D — Wsiny

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

6th Order Point Mass (Coordinated Flight) | 4th Order Point Mass (Longitudinal) | 6th Order Point
Mass Forces (Coordinated Flight)

Introduced before R2006a
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6DoF Animation

Create 3-D MATLAB Graphics animation of six-degrees-of-freedom object
Library: Aerospace Blockset / Animation / MATLAB-Based Animation

LR

pBw

L
]

L]

Description

The 6DoF Animation block displays a 3-D animated view of a six-degrees-of-freedom (6DoF) vehicle,
its trajectory, and its target using MATLAB Graphics.

The 6DoF Animation block uses the input values and the block parameters to create and display the
animation. The Axes limits, Static object position, and Position of camera parameters have the
same units of length as the input parameters.

This block does not produce deployable code, but you can use it with Simulink Coder external mode
as a SimViewingDevice.

Ports
Input

X. — Downrange position, crossrange position, and altitude (positive down)
three-element vector

Downrange position, crossrange position, and altitude (positive down) of the vehicle, specified as a
three-element vector.

Data Types: double

¢ 0 y — Euler angles
three-element vector

Euler angles of the vehicle, specified as a three-element vector.

Data Types: double

Parameters

Axes limits [xmin xmax ymin ymax zmin zmax] — Axes limits
[0 4000 -2000 2000 -5000 -3000] (default) | six-element vector

Three-dimensional space to be viewed, specified as a six-element vector.

Programmatic Use
Block Parameter: ul

5-77



5 Blocks

5-78

Type: character vector
Values: six-element vector
Default: ' [0 4000 -2000 2000 -5000 -3000]'

Time interval between updates — Time interval
0.1 (default) | scalar

Time interval at which the animation is redrawn, specified as a double scalar.

Programmatic Use
Block Parameter: u2
Type: character vector
Values: double scalar
Default: '0.1"'

Size of craft displayed — Scale factor
1.0 (default) | scalar

Scale factor to adjust the size of the vehicle and target, specified as a double scalar.

Programmatic Use
Block Parameter: u3
Type: character vector
Values: double scalar
Default: '1.0'

Static object position [xp yp zp] — Static object position
[4000 O -5000] (default) | three-element vector

Altitude, crossrange position, and downrange position of the target, specified as three-element vector.

Programmatic Use

Block Parameter: u4

Type: character vector
Values: three-element vector
Default: ' [4000 0 -5000]"'

Enter view — Entrance view
Fixed position (default) | Cockpit | Fly alongside

Preset entrance views, specified as:
* Fixed position

* Cockpit

* Fly alongside

These preset views are specified by MATLAB Graphics parameters CameraTarget and
CameraUpVector for the figure axes.

Tip To customize the position and field of view for the selected view, use the Position of camera and
View angle parameters.




6DoF Animation

Programmatic Use

Block Parameter: u5

Type: character vector

Values: Fixed position | Cockpit|Fly alongside
Default: 'Fixed position'

Position of camera [xc yc zc] — Camera position
[2000 500 -3150] (default) | three-element vector

Camera position, specified using the MATLAB Graphics parameter CameraPosition for the figure axes
as a three-element vector. Used in all cases except for when Enter view is set to Cockpit.

Programmatic Use

Block Parameter: u6

Type: character vector

Values: three-element vector
Default: ' [2000 500 -3150]'

View angle — View angle
10 (default) | scalar

View angle for the MATLAB Graphics parameter CameraViewAngle for the figure axes in degrees,
specified as a double scalar.

Programmatic Use
Block Parameter: u7
Type: character vector
Values: double scalar
Default: '10'

Enable animation — Display animation
on (default) | of f

Whether to display the animation during the simulation. If not selected, the animation is not
displayed.

Programmatic Use
Block Parameter: u3
Type: character vector
Values: on | of f
Default: 'on'

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3DoF Animation | FlightGear Preconfigured 6DoF Animation | CameraPosition | CameraViewAngle

Introduced before R2006a
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6DOF (Euler Angles)

Implement Euler angle representation of six-degrees-of-freedom equations of motion

Library:

P s

w0

Bady
Euler Angles
M (Nem)

V,_{mis)
X, (m)
@8y (rad)
DCME:

W, (mis)
w, rads)

du it

A )

Descripti

on

Aerospace Blockset / Equations of Motion / 6DOF

The 6DOF (Euler Angles) block implements the Euler angle representation of six-degrees-of-freedom
equations of motion, taking into consideration the rotation of a body-fixed coordinate frame (Xj, Y3,
Z,) about a flat Earth reference frame (X,, Y,, Z,). For more information about these reference points,
see “Algorithms” on page 5-86.

Limitatio

ns

The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports

Input

Fyyz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector.

Data Types: double

My, (N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.

Data Types: double

Output

V. — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.

Data Types: double



6DOF (Euler Angles)

X. — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.

Data Types: double

¢ 0 y (rad) — Euler rotation angles
three-element vector

Euler rotation angles [roll, pitch, yaw], returned as three-element vector, in radians.

Data Types: double

DCM,. — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.

Data Types: double

V, — Velocity in the body-fixed frame
three-element vector

Velocity in the body-fixed frame, returned as a three-element vector.

Data Types: double

w, (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.

Data Types: double

dw,/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.

Data Types: double

Ay, — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.

Data Types: double

A, — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
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Data Types: double

Parameters

Main

Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity |[Position (Mass Inertia
Metric Newton Newton- Meters per second |Meters per |Meters Kilogram |Kilogram
(MKS) meter squared second meter
squared
English Pound Foot-pound |Feet per second Feet per |Feet Slug Slug foot
(Velocity squared second squared
in ft/s)
English Pound Foot-pound |Feet per second Knots Feet Slug Slug foot
(Velocity squared squared
in kts)
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Programmatic Use

Block Parameter: units
Type: character vector

Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type
Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.

Mass Type

Description

Default for

Fixed

Mass is constant throughout the

simulation.

6DOF (Euler Angles)

* 6DOF (Quaternion)

* 6DOF Wind (Wind Angles)
* 6DOF Wind (Quaternion)
 6DOF ECEF (Quaternion)
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Mass Type Description

Default for

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

Simple Variable Mass 6DOF
(Euler Angles)

Simple Variable Mass 6DOF
(Quaternion)

Simple Variable Mass 6DOF
Wind (Wind Angles)

Simple Variable Mass 6DOF
Wind (Quaternion)

Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

Custom Variable Mass 6DOF
(Euler Angles)

Custom Variable Mass 6 DOF
(Quaternion)

Custom Variable Mass 6 DOF
Wind (Wind Angles)

Custom Variable Mass 6DOF
Wind (Quaternion)

Custom Variable Mass 6 DOF
ECEF (Quaternion)

The Simple Variable selection conforms to the previously described equations of motion.

Programmatic Use

Block Parameter: mtype

Type: character vector

Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation
Euler Angles (default) | Quaternion

Equations of motion representation, specified according to the following table.

Representation Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Quaternion selection conforms the equations of motion in “Algorithms” on page 5-86.

Programmatic Use

Block Parameter: rep

Type: character vector

Values: Euler Angles | Quaternion
Default: 'Euler Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 O O] (default) | three-element vector
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Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use

Block Parameter: xme 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial velocity in body axes [U,v,w] — Velocity in body axes
[0 O O] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use

Block Parameter: Vm_0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation
[0 0 O] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use

Block Parameter: eul 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial body rotation rates [p,q,r] — Initial body rotation
[0 0 O] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use

Block Parameter: pm 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial mass — Initial mass
1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use

Block Parameter: mass 0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Inertia — Inertia
eye(3) (default) | scalar
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Inertia of the body, specified as a double scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use

Block Parameter: inertia
Type: character vector

Values: eye(3) | double scalar
Default: eye(3)

Include inertial acceleration — Include inertial acceleration port
off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Ay, port, select this parameter.

Programmatic Use

Block Parameter: abi flag
Type: character vector
Values: 'off' | 'on'
Default: of f

State Attributes

Assign unique name to each state. You can use state names instead of block paths during
linearization.

* To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

* To assign names to multiple states, enter a comma-delimited list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

* If a parameter is empty (' '), no name assignment occurs.

* The state names apply only to the selected block with the name parameter.

* The number of states must divide evenly among the number of state names.

* You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

» To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name
"' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme statename
Type: character vector
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Values: | comma-separated list surrounded by braces

Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name
"' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: Vm_statename

Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’

Euler rotation angles: e.g., {'phi', 'theta', 'psi'} — Euler rotation state name
"' (default) | comma-separated list surrounded by braces

Euler rotation angle state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: eul statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names
"' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’
Algorithms

The 6DOF (Euler Angles) block uses these reference frame concepts.

» The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass.

The flat Earth reference frame is considered inertial, an excellent approximation that allows the
forces due to the Earth motion relative to the "fixed stars" to be neglected.
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Center of
gravity Xb

Ye
e

Flat Earth reference frame

* Translational motion of the body-fixed coordinate frame, where the applied forces [F, F, F,]" are in
the body-fixed frame, and the mass of the body m is assumed constant.
Fy
Fb= Fy =m(\7b+a_)><\7b)

+ The rotational dynamics of the body-fixed frame, where the applied moments are [L. M N]7, and
the inertia tensor I is with respect to the origin O.

L
Mg =|M|=1Io+ & x (I®)
N
Ixx _Ixy _Ixz
I=|=Iy Ly —Iy
— I _Izy I,
* The relationship between the body-fixed angular velocity vector, [p q r]T, and the rate of change of

the Euler angles, [¢ 6 q'/]T, are determined by resolving the Euler rates into the body-fixed
coordinate frame.
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pl [¢] [T 0 0 0] [T 0 0 Jfcosd 0 —sind][0 ¢
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Inverting J then gives the required relationship to determine the Euler rate vector.

1 (singtand) (cos¢tand)

(g _ JZ _ cos¢ —sing

] . 0 sing cos¢

v cos@ cosO
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) | 6DOF Wind (Wind Angles)
| Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) | Custom
Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom
Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF (Euler Angles) | Simple
Variable Mass 6DOF (Quaternion) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable
Mass 6DOF Wind (Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)

Topics
“About Aerospace Coordinate Systems” on page 2-8

Introduced in R2006a
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6DOF (Quaternion)

Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to
body axes
Library: Aerospace Blockset / Equations of Motion / 6DOF

v, mis)
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=
v, (mis)
Bady w_{radis)
Quaterion ©

My M- duy fat

A, (mis?)

Description

The 6DOF (Quaternion) block implements quaternion representation of six-degrees-of-freedom
equations of motion with respect to body axes. For a description of the coordinate system and the
translational dynamics, see the block description for the 6DOF (Euler Angles) block.

For more information on the integration of the rate of change of the quaternion vector, see
“Algorithms” on page 5-95.

Limitations

The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports

Input

F.yz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector.

Data Types: double

M,y,(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.

Data Types: double
Output

V. — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.

5-89



5 Blocks

Data Types: double

X. — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.

Data Types: double

¢ 0 y (rad) — Euler rotation angles
three-element vector

Euler rotation angles [roll, pitch, yaw], returned as three-element vector, in radians.

Data Types: double

DCM,. — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.

Data Types: double

V, — Velocity in the body-fixed frame
three-element vector

Velocity in the body-fixed frame, returned as a three-element vector.

Data Types: double

w, (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.

Data Types: double

dw,/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.

Data Types: double

A,, — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.

Data Types: double

A,. — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.
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Dependencies

This port appears only when the Include inertial acceleration check box is selected.

Data Types: double

Parameters
Main

Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity |[Position [Mass Inertia
Metric Newton Newton- Meters per second |Meters per | Meters Kilogram |Kilogram
(MKS) meter squared second meter
squared
English Pound Foot-pound |Feet per second Feet per |Feet Slug Slug foot
(Velocity squared second squared
in ft/s)
English Pound Foot-pound |Feet per second Knots Feet Slug Slug foot
(Velocity squared squared
in kts)

Programmatic Use

Block Parameter: units
Type: character vector

Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type
Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.

Mass Type

Description Default for

Fixed

Mass is constant throughout the
simulation.

6DOF (Euler Angles)
* 6DOF (Quaternion)

* 6DOF Wind (Wind Angles)
¢ 6DOF Wind (Quaternion)
 6DOF ECEF (Quaternion)
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Mass Type Description

Default for

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

Simple Variable Mass 6DOF
(Euler Angles)

Simple Variable Mass 6DOF
(Quaternion)

Simple Variable Mass 6DOF
Wind (Wind Angles)

Simple Variable Mass 6DOF
Wind (Quaternion)

Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

Custom Variable Mass 6DOF
(Euler Angles)

Custom Variable Mass 6 DOF
(Quaternion)

Custom Variable Mass 6 DOF
Wind (Wind Angles)

Custom Variable Mass 6DOF
Wind (Quaternion)

Custom Variable Mass 6 DOF
ECEF (Quaternion)

The Simple Variable selection conforms to the previously described equations of motion.

Programmatic Use

Block Parameter: mtype

Type: character vector

Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation
Quaternion (default) | Euler Angles

Equations of motion representation, specified according to the following table.

Representation Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-95.

Programmatic Use

Block Parameter: rep

Type: character vector

Values: Euler Angles | Quaternion
Default: 'Quaternion'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 O] (default) | three-element vector
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Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use

Block Parameter: xme 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial velocity in body axes [U,v,w] — Velocity in body axes
[0 O O] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use

Block Parameter: Vm_0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation
[0 0 O] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use

Block Parameter: eul 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial body rotation rates [p,q,r] — Initial body rotation
[0 0 O] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use

Block Parameter: pm 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial mass — Initial mass
1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use

Block Parameter: mass 0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Inertia — Inertia
eye(3) (default) | scalar
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Inertia of the body, specified as a double scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use

Block Parameter: inertia
Type: character vector

Values: eye(3) | double scalar
Default: eye(3)

Gain for quaternion normalization — Gain
1.0 (default) | scalar

Gain to maintain the norm of the quaternion vector equal to 1.0, specified as a double scalar.

Programmatic Use

Block Parameter: k quat
Type: character vector
Values: 1.0 | double scalar
Default: 1.0

Include inertial acceleration — Include inertial acceleration port
off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Ay, port, select this parameter.

Programmatic Use

Block Parameter: abi flag
Type: character vector
Values: 'off' | 'on'
Default: of f

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

» To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

» To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

* If a parameter is empty (' '), no name is assigned.

* The state names apply only to the selected block with the name parameter.

* The number of states must divide evenly among the number of state names.

* You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.
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» To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name
"' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: xme statename

Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name
"' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: Vm_statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'gk'} — Quaternion vector state name
"' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: quat statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names
"' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm statename
Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’
Algorithms

The integration of the rate of change of the quaternion vector is given below. The gain K drives the
norm of the quaternion state vector to 1.0 should ebecome nonzero. You must choose the value of this
gain with care, because a large value improves the decay rate of the error in the norm, but also slows
the simulation because fast dynamics are introduced. An error in the magnitude in one element of the
quaternion vector is spread equally among all the elements, potentially increasing the error in the
state vector.
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Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

6DOF (Euler Angles) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) | 6DOF Wind (Wind
Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) |
Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) |
Custom Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF (Euler Angles) |
Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple
Variable Mass 6DOF Wind (Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)

Introduced in R2006a
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6DOF ECEF (Quaternion)

Implement quaternion representation of six-degrees-of-freedom equations of motion in Earth-
centered Earth-fixed (ECEF) coordinates
Library: Aerospace Blockset / Equations of Motion / 6DOF

F Ny Fixed o
e Mas: wih

uuuuuuuuu

Description

The 6DOF ECEF (Quaternion) block Implement quaternion representation of six-degrees-of-freedom
equations of motion in Earth-centered Earth-fixed (ECEF) coordinates. It considers the rotation of a
Earth-centered Earth-fixed (ECEF) coordinate frame (Xgcgr, Yecer, Zecpr) about an Earth-centered
inertial (ECI) reference frame (Xgc;, Yecr, Zecr). The origin of the ECEF coordinate frame is the center
of the Earth. For more information on the ECEF coordinate frame, see “Algorithms” on page 5-106.

Limitations

« This implementation assumes that the applied forces act at the center of gravity of the body, and
that the mass and inertia are constant.

» This implementation generates a geodetic latitude that lies between +90 degrees, and longitude
that lies between =180 degrees. Additionally, the MSL altitude is approximate.

* The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be
achieved. The Earth's precession, nutation, and polar motion are neglected. The celestial
longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough
approximation to the sidereal time.

* The implementation of the ECEF coordinate system assumes that the origin is at the center of the
planet, the x-axis intersects the Greenwich meridian and the equator, the z-axis is the mean spin
axis of the planet, positive to the north, and the y-axis completes the right-handed system.

* The implementation of the ECI coordinate system assumes that the origin is at the center of the
planet, the x-axis is the continuation of the line from the center of the Earth toward the vernal
equinox, the z-axis points in the direction of the mean equatorial plane's north pole, positive to the
north, and the y-axis completes the right-handed system.

Ports
Input

F.y. — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
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Data Types: double

My, — Applied moments
three-element vector

Applied moments, specified as a three-element vector.

Data Types: double

L;(0) — Initial celestial longitude of Greenwich
scalar

Greenwich meridian initial celestial longitude angle, specified as a scalar.

Dependencies

To enable this port, set Celestial longitude of Greenwich to External.

Data Types: double
Output

V..et — Velocity of body with respect to ECEF frame,
three-element vector

Velocity of body with respect to ECEF frame, expressed in ECEF frame, returned as a three-element
vector.

Data Types: double

Xecef — Position in ECEF reference frame
three-element vector

Position in ECEF reference frame, returned as a three-element vector.

Data Types: double

i LU h — Position in geodetic latitude, longitude, and altitude
three-element vector | M-by-3 array

Position in geodetic latitude, longitude, and altitude, in degrees, returned as a three-element vector
or M-by-3 array, in selected units of length, respectively.

Data Types: double

¢ 0 ¥ (rad) — Body rotation angles
three-element vector

Body rotation angles [roll, pitch, yaw], returned as a three-element vector, in radians. Euler rotation
angles are those between body and NED coordinate systems.

Data Types: double

DCM,; — Coordinate transformation from ECI axes
3-by-3 matrix

Coordinate transformation from ECI axes to body-fixed axes, returned as a 3-by-3 matrix.

Data Types: double
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DCM,. — Coordinate transformation from NED axes
3-by-3 matrix
Coordinate transformation from NED axes to body-fixed axes, returned as a 3-by-3 matrix.

Data Types: double

DCM.s — Coordinate transformation from ECEF axes
3-by-3 matrix
Coordinate transformation from ECEF axes to NED axes, returned as a 3-by-3 matrix.

Data Types: double

V, — Velocity of body with respect to ECEF frame
three-element vector

Velocity of body with respect to ECEF frame, returned as a three-element vector.

Data Types: double

w1 — Relative angular rates of body with respect to NED frame
three-element vector

Relative angular rates of body with respect to NED frame, expressed in body frame and returned as a
three-element vector, in radians per second.

Data Types: double

W, — Angular rates of body with respect to ECI frame
three-element vector

Angular rates of the body with respect to ECI frame, expressed in body frame and returned as a
three-element vector, in radians per second.

Data Types: double

dw,/dt — Angular accelerations of the body with respect to ECI frame
three-element vector

Angular accelerations of the body with respect to ECI frame, expressed in body frame and returned
as a three-element vector, in radians per second squared.

Data Types: double

A,, — Accelerations in body-fixed axes
three-element vector

Accelerations of the body with respect to the ECEF coordinate frame, returned as a three-element
vector.

Data Types: double

Ay ocef — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to ECEF frame, returned as a three-element vector.
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Dependencies

To enable this point, Include inertial acceleration.

Data Types: double

Parameters

Main

Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity |[Position [Mass Inertia
Metric Newton Newton- Meters per second |Meters per | Meters Kilogram |Kilogram
(MKS) meter squared second meter
squared
English Pound Foot-pound |Feet per second Feet per |Feet Slug Slug foot
(Velocity squared second squared
in ft/s)
English Pound Foot-pound |Feet per second Knots Feet Slug Slug foot
(Velocity squared squared
in kts)
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Programmatic Use

Block Parameter: units
Type: character vector

Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass type — Mass type
Fixed (default) | Simple Variable | Custom Variable

Select the type of mass to use:

Mass Type

Description

Default for

Fixed

Mass is constant throughout the

simulation.

6DOF (Euler Angles)

* 6DOF (Quaternion)

* 6DOF Wind (Wind Angles)
¢ 6DOF Wind (Quaternion)
 6DOF ECEF (Quaternion)




6DOF ECEF (Quaternion)

Mass Type Description Default for
Simple Variable Mass and inertia vary linearly as|¢ Simple Variable Mass 6DOF
a function of mass rate. (Euler Angles)
* Simple Variable Mass 6DOF
(Quaternion)

* Simple Variable Mass 6DOF
Wind (Wind Angles)

* Simple Variable Mass 6DOF
Wind (Quaternion)

* Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are |¢ Custom Variable Mass 6DOF
customizable. (Euler Angles)
e (Custom Variable Mass 6DOF
(Quaternion)

¢ Custom Variable Mass 6DOF
Wind (Wind Angles)

e Custom Variable Mass 6DOF
Wind (Quaternion)

e (Custom Variable Mass 6DOF
ECEF (Quaternion)

The Fixed selection conforms to the previously described equations of motion.

Programmatic Use

Block Parameter: mtype

Type: character vector

Values: Fixed | Simple Variable | Custom Variable
Default: 'Simple Variable'

Initial position in geodetic latitude, longitude and altitude [mu,1,h] — Initial
location of the aircraft
[0 0 0] (default) | three-element vector

Initial location of the aircraft in the geodetic reference frame, specified as a three-element vector.
Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return
unexpected values because of singularity at the poles.

Programmatic Use

Block Parameter: xg 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial velocity in body axes [U,v,w] — Velocity in body axes
[0 0 0] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.
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Programmatic Use

Block Parameter: Vm 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation
[0 0 O] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use

Block Parameter: eul 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial body rotation rates [p,q,r] — Initial body rotation
[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use

Block Parameter: pm 0

Type: character vector

Values: '[0 O O]' | three-element vector
Default: '[0 0 O]

Initial mass — Initial mass
1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use

Block Parameter: mass 0
Type: character vector
Values: '1.0"' | double scalar
Default: '1.0'

Inertia — Inertia
eye(3) (default) | scalar

Inertia of the body, specified as a double scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use

Block Parameter: inertia
Type: character vector

Values: eye(3) | double scalar
Default: eye(3)



6DOF ECEF (Quaternion)

Include inertial acceleration — Include inertial acceleration port
of f (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Ay, port, select this parameter.

Programmatic Use

Block Parameter: abi flag
Type: character vector
Values: 'off' | 'on'
Default: of f

Planet

Planet model — Planet model
Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).

Programmatic Use

Block Parameter: ptype

Type: character vector

Values: 'Earth (WGS84)' | 'Custom’
Default: 'Earth (WGS84)'

Equatorial radius of planet — Radius of planet at equator
6378137 (default) | scalar

Radius of the planet at its equator, specified as a double scalar, in the same units as the desired units

for the ECEF position.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: '6378137'

Flattening — Flattening of planet
1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
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Default: '1/298.257223563"'

Rotational rate — Rotational rate
7292115e-11 (default) | scalar

Rotational rate of the planet, specified as a scalar, in rad/s.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use

Block Parameter: w E
Type: character vector
Values: double scalar
Default: '7292115e-11"

Celestial longitude of Greenwich source — Source of Greenwich meridian initial
celestial longitude
Internal (default) | External

Source of Greenwich meridian initial celestial longitude, specified as:

Internal Use celestial longitude value from Celestial
longitude of Greenwich.

External Use external input for celestial longitude value.

Dependencies

Setting this parameter to External enables the Lg(0) port.

Programmatic Use

Block Parameter: angle _in
Type: character vector

Values: 'Internal’' | 'External’
Default: 'Internal’

Celestial longitude of Greenwich [deg] — Initial angle
0 (default) | scalar

Initial angle between Greenwich meridian and the x-axis of the ECI frame, specified as a double
scalar.

Dependencies

To enable this parameter, set Celestial longitude of Greenwich source to Internal.

Programmatic Use
Block Parameter: LGO
Type: character vector
Values: double scalar
Default: '0'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.



6DOF ECEF (Quaternion)

» To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

» To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

* If a parameter is empty (' '), no name is assigned.

* The state names apply only to the selected block with the name parameter.

* The number of states must divide evenly among the number of state names.

* You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

» To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'gk'} — Quaternion vector state name
"' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: quat statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names
"' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: pm_statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name
"' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: Vm_statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

ECEF position: e.g., {'Xecef', 'Yecef', 'Zecef'} — ECEF position state name
"' (default) | comma-separated list surrounded by braces

ECEF position state names, specified as a comma-separated list surrounded by braces.
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Programmatic Use

Block Parameter: posECEF statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Inertial position: e.g., {'Xeci', 'Yeci', 'Zeci'} — Inertial position state names
"' (default) | comma-separated list surrounded by braces

Inertial position state names, specified as a comma-separated list surrounded by braces.

Default value is

Programmatic Use

Block Parameter: posECI statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Celestial longitude of Greenwich: e.g., 'LG' — Celestial longitude state name
"' (default) | character vector

Celestial longitude of Greenwich state name, specified as a character vector.

Programmatic Use
Block Parameter: LG statename
Type: character vector

Values: '' | scalar
Default: '’
Algorithms

The origin of the ECEF coordinate frame is the center of the Earth. In addition, the body of interest is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is
simplified to consider only the constant rotation of the ellipsoid Earth (w,) including an initial
celestial longitude (L;(0)). This excellent approximation allows the forces due to the Earth's complex
motion relative to the “fixed stars” to be neglected.



6DOF ECEF (Quaternion)

Greervwich
meridian

The translational motion of the ECEF coordinate frame is given below, where the applied forces [F, F,
F,]" are in the body frame and the mass of the body m is assumed constant.

Fy
F_b = Fy =m ‘7b + Eb X Vb + DCbeée X Vb + DCbe(Ge X (u_)e X Xf)))
F;

where the change of position in ECEF X f is calculated by
Xf = DCMppVj

and the velocity of the body with respect to ECEF frame, expressed in body frame (V},), angular rates
of the body with respect to ECI frame, expressed in body frame (wp). Earth rotation rate (w,), and
relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body
frame (wre), are defined as

u p] 0
Vp=|V| @re1 = |q| @e=| 0| &p = @re; + DCMpfie + DCMpe@neg
w r| We
I cospi VE/(N + h)
Wned = ! = —-Vn/(M + h)
—[sinp —Vg e tanp/(N + h)

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied
moments are [L M N]7, and the inertia tensor I is with respect to the origin O.
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Up
Apy = | Vb | = =y = [@ X Ty + DCMpyi, X 7 + DCMay(@e X (@e x X))
wp
Abecef = %
L
My = |M| = Iy, + @}, x (Iivp)
N
LI _Ixy —I,
I'=|=Ly Ly -y,
_sz _Izy Izz

The integration of the rate of change of the quaternion vector is given below.

do 0  wp(l) wp(2) wh(3) |[q0
af g me) 0 —wp(3) wu(2) (@
o” "o w0 —ama
q3 —wp(3) —wp(2) wp(l) 0 |lq3

Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

References

[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation, 2nd ed. Hoboken, NJ: John
Wiley & Sons, 2003.

[2] McFarland, Richard E. "A Standard Kinematic Model for Flight simulation at NASA-Ames." NASA
CR-2497.

[3] "Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I -
Methods, Techniques and Data Used in WGS84 Development." DMA TR8350.2-A.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF Wind (Quaternion) | 6DOF Wind (Wind Angles) |
Simple Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF (Euler Angles) |
Custom Variable Mass 6DOF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom
Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple
Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass
6DOF Wind (Wind Angles)

Introduced in R2006a



6DOF Wind (Quaternion)

6DOF Wind (Quaternion)

Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to
wind axes
Library: Aerospace Blockset / Equations of Motion / 6DOF

v (mis)
X, (m]

Hy x (rad)

e
Mass

- - DM,

o ' W fmis)
=2

ap (rad)

Wind it dpieit
uuuuuuuuu w, raas)

g it

A (%)

Description

The 6DOF Wind (Quaternion) block considers the rotation of a wind-fixed coordinate frame (X, Y,,
Z,) about an flat Earth reference frame (X,, Y,, Z,). For more information on the wind-fixed
coordinate frame, see “Algorithms” on page 5-116.

Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Limitations

The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports

Input

Fyyz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector.

Data Types: double

My, (N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.

Data Types: double
Output

V. — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.

Data Types: double
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X. — Position in flat Earth reference frame

three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.

Data Types: double

K Y x (rad) — Wind rotation angles

three-element vector

Wind rotation angles [bank, flight path, heading], returned as a three-element vector, in radians.
Data Types: double

DCM,. — Coordinate transformation

3-by-3 matrix

Coordinate transformation from flat Earth axes to wind-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

V,, — Velocity in wind-fixed frame

three-element vector

Velocity in wind-fixed frame, returned as a three-element vector.

Data Types: double

a B (rad) — Angle of attack and sideslip angle

two-element vector

Angle of attack and sideslip angle, returned as a two-element vector, in radians.

Data Types: double

da/dt dB/dt — Rate of change of angle of attack and rate of change of sideslip angle
two-element vector

Rate of change of angle of attack and rate of change of sideslip angle, returned as a two-element
vector, in radians per second.

Data Types: double

w, (rad/s) — Angular rates in body-fixed axes

three-element vector

Angular rates in body-fixed axes, returned as a three-element vector.

Data Types: double

dw,/dt — Angular accelerations in body-fixed axes
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.

Data Types: double
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A,, — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.

Data Types: double

A,. — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this point, select Include inertial acceleration.

Data Types: double
Parameters

Main

Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity |[Position (Mass Inertia
Metric Newton Newton- Meters per second |Meters per | Meters Kilogram |Kilogram
(MKS) meter squared second meter
squared
English Pound Foot-pound |Feet per second Feet per |Feet Slug Slug foot
(Velocity squared second squared
in ft/s)
English Pound Foot-pound |Feet per second Knots Feet Slug Slug foot
(Velocity squared squared
in kts)

Programmatic Use

Block Parameter: units
Type: character vector

Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type
Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.
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Mass Type

Description

Default For

Fixed

Mass is constant throughout the
simulation.

6DOF (Euler Angles)
6DOF (Quaternion)

6DOF Wind (Wind Angles)
6DOF Wind (Quaternion)
6DOF ECEF (Quaternion)

Simple Variable

Mass and inertia vary linearly as
a function of mass rate.

Simple Variable Mass 6DOF
(Euler Angles)

Simple Variable Mass 6DOF
(Quaternion)

Simple Variable Mass 6DOF
Wind (Wind Angles)

Simple Variable Mass 6DOF
Wind (Quaternion)

Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable

Mass and inertia variations are
customizable.

Custom Variable Mass 6 DOF
(Euler Angles)

Custom Variable Mass 6 DOF
(Quaternion)

Custom Variable Mass 6DOF
Wind (Wind Angles)

Custom Variable Mass 6 DOF
Wind (Quaternion)

Custom Variable Mass 6 DOF
ECEF (Quaternion)

The Simple Variab'le selection conforms to the previously described equations of motion.

Programmatic Use

Block Parameter: mtype
Type: character vector

Values: Fixed | Simple Variable | Custom Variable

Default: Simple Variable

Representation — Equations of motion representation
Quaternion (default) | Wind Angles

Equations of motion representation, specified according to the following table.

Representation

Description

Quaternion

Use quaternions within equations of motion.

Wind Angles

Use wind angles within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-116.
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Programmatic Use

Block Parameter: rep

Type: character vector

Values: Wind Angles | Quaternion
Default: 'Wind Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes
[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use

Block Parameter: xme 0

Type: character vector

Values: '[0 O O]' | three-element vector
Default: '[0 0 O]

Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta] — Initial
airspeed, angle of attack, and sideslip angle
[0 0 O] (default) | three-element vector

Initial airspeed, angle of attack, and sideslip angle, specified as a three-element vector.

Programmatic Use

Block Parameter: Vm_0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial wind orientation [bank angle,flight path angle,heading angle] — Initial
wind orientation
[0 O O] (default) | three-element vector

Initial wind angles [bank, flight path, and heading], specified as a three-element vector in radians.

Programmatic Use

Block Parameter: wind 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial body rotation rates [p,q,r] — Initial body rotation
[0 0 O] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use

Block Parameter: pm 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial mass — Initial mass
1.0 (default) | scalar
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Initial mass of the rigid body, specified as a double scalar.

Programmatic Use

Block Parameter: mass 0
Type: character vector
Values: '1.0"' | double scalar
Default: '1.0'

Inertia in body axis — Inertia of body
eye(3) (default) | scalar

Inertia of the body, specified as a double scalar.

Programmatic Use

Block Parameter: inertia
Type: character vector

Values: 'eye(3)' | double scalar
Default: 'eye(3)'

Include inertial acceleration — Include inertial acceleration port
off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Ay, port, select this parameter.

Programmatic Use

Block Parameter: abi flag
Type: character vector
Values: 'off' | 'on'
Default: of f

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

» To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

* To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

» If a parameter is empty (' '), no name is assigned.
* The state names apply only to the selected block with the name parameter.
* The number of states must divide evenly among the number of state names.

* You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

* To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.
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Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name
"' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: xme statename

Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’

Velocity: e.g., 'V' — Velocity state name
"' (default) | character vector

Velocity state names, specified as a character vector.

Programmatic Use

Block Parameter: Vm statename
Type: character vector

Values: '' | character vector
Default: '’

Incidence angle e.g., 'alpha' — Incidence angle state name
"' (default) | character vector

Incidence angle state name, specified as a character vector.

Programmatic Use

Block Parameter: alpha statename
Type: character vector

Values: ''

Default: '

Sideslip angle e.g., 'beta’' — Sideslip angle state name
"' (default) | character vector

Sideslip angle state name, specified as a character vector.

Programmatic Use

Block Parameter: beta statename
Type: character vector

Values: ''

Default: '

Wind orientation e.g., {'mu', 'gamma', 'chi'} — Wind orientation state names
"' (default) | comma-separated list surrounded by braces

Wind orientation state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: wind statename
Type: character vector

Values: ''

Default: '

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'gk'} — Quaternion vector state name
"' (default) | comma-separated list surrounded by braces
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Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: quat statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names
"' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: pm statename

Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’

Mass: e.g., 'mass' — Mass state name
"' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass statename
Type: character vector

Values: '' | character vector
Default: '’
Algorithms

The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass. The flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth's motion relative to the “fixed stars” to be

neglected.
Center of
gravity PORY
- Wind-fixed
- reference frame
- -
2w
Ze

Earth reference frame
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The translational motion of the wind-fixed coordinate frame is given below, where the applied forces
[F\ F, F,]"are in the wind-fixed frame, and the mass of the body m is assumed constant.
Fx
Fy = |Fy|=m(V, + @, x V)
F,

F
Ape = DCMwaW

% Pw pp — Bsina Pb
VW= 0] wyw = |qw| = DMCyy qb_d »Wp = |
0 T'w ry, + Bcosa b
up _
: Fy _ &
Abb =|Vp|= DCMWb m — Wy X VW
W

The rotational dynamics of the body-fixed frame are given below, where the applied moments are [L
M NTT, and the inertia tensor I is with respect to the origin O. Inertia tensor I is easier to define in
body-fixed frame.

L
My, = |M| = Iy, + @}, x (Ivp)
N
Ixx _Ixy _Ixz
I'=|=Iy Ly Iy,

_sz _Izy Izz

The integration of the rate of change of the quaternion vector is given below.

qdo 0 p q r4

q1 -p 0 —-r q ||q1

==Y _

7p) qr 0 -plla

q3 -T=q p 0lg
References

[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation. New York: John Wiley & Sons,
1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also

6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Wind Angles) |
Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) | Custom
Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom
Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple
Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass
6DOF Wind (Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)

Introduced in R2006a
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6DOF Wind (Wind Angles)

Implement wind angle representation of six-degrees-of-freedom equations of motion
Library: Aerospace Blockset / Equations of Motion / 6DOF

W (mis)

X, (m)

.M Fixad .
Mas: ¥ (rad)

poM_
v, (mis)
af {rad)
d ot dfidt
w, (radis)

du et

A, (i)

Description

The 6DOF Wind (Wind Angles) block implements a wind angle representation of six-degrees-of-
freedom equations of motion. For a description of the coordinate system employed and the
translational dynamics, see the block description for the 6DOF Wind (Quaternion) block.

For more information on the relationship between the wind angles, see “Algorithms” on page 5-126

Limitations

The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports
Input

F.yz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector.

Data Types: double

My, (N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.

Data Types: double
Output

V. — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.

Data Types: double
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X. — Position in flat Earth reference frame

three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.

Data Types: double

K Y x (rad) — Wind rotation angles

three-element vector

Wind rotation angles [bank, flight path, heading], returned as a three-element vector, in radians.
Data Types: double

DCM,. — Coordinate transformation

3-by-3 matrix

Coordinate transformation from flat Earth axes to wind-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

V,, — Velocity in wind-fixed frame

three-element vector

Velocity in wind-fixed frame, returned as a three-element vector.

Data Types: double

a B (rad) — Angle of attack and sideslip angle

two-element vector

Angle of attack and sideslip angle, returned as a two-element vector, in radians.

Data Types: double

da/dt dB/dt — Rate of change of angle of attack and rate of change of sideslip angle
two-element vector

Rate of change of angle of attack and rate of change of sideslip angle, returned as a two-element
vector, in radians per second.

Data Types: double

w, (rad/s) — Angular rates in body-fixed axes

three-element vector

Angular rates in body-fixed axes, returned as a three-element vector.

Data Types: double

dw,/dt — Angular accelerations in body-fixed axes
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.

Data Types: double
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A,, — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.

Data Types: double

A,. — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters

Main

Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity |[Position (Mass Inertia
Metric Newton Newton- Meters per second |Meters per | Meters Kilogram |Kilogram
(MKS) meter squared second meter
squared
English Pound Foot-pound |Feet per second Feet per |Feet Slug Slug foot
(Velocity squared second squared
in ft/s)
English Pound Foot-pound |Feet per second Knots Feet Slug Slug foot
(Velocity squared squared
in kts)

Programmatic Use

Block Parameter: units
Type: character vector

Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type
Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.
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Mass Type

Description

Default For

Fixed

Mass is constant throughout the
simulation.

6DOF (Euler Angles)
6DOF (Quaternion)

6DOF Wind (Wind Angles)
6DOF Wind (Quaternion)
6DOF ECEF (Quaternion)

Simple Variable

Mass and inertia vary linearly as
a function of mass rate.

Simple Variable Mass 6DOF
(Euler Angles)

Simple Variable Mass 6DOF
(Quaternion)

Simple Variable Mass 6DOF
Wind (Wind Angles)

Simple Variable Mass 6DOF
Wind (Quaternion)

Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable

Mass and inertia variations are
customizable.

Custom Variable Mass 6 DOF
(Euler Angles)

Custom Variable Mass 6 DOF
(Quaternion)

Custom Variable Mass 6DOF
Wind (Wind Angles)

Custom Variable Mass 6 DOF
Wind (Quaternion)

Custom Variable Mass 6 DOF
ECEF (Quaternion)

The Simple Variab'le selection conforms to the previously described equations of motion.

Programmatic Use

Block Parameter: mtype
Type: character vector

Values: Fixed | Simple Variable | Custom Variable

Default: Simple Variable

Representation — Equations of motion representation
Wind Angles (default) | Quaternion

Equations of motion representation, specified according to the following table.

Representation

Description

Wind Angles

Use wind angles within equations of motion.

Quaternion

Use quaternions within equations of motion.

The Wind Angles selection conforms to the equations of motion in “Algorithms” on page 5-126.
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Programmatic Use

Block Parameter: rep

Type: character vector

Values: Wind Angles | Quaternion
Default: 'Wind Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes
[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use

Block Parameter: xme 0

Type: character vector

Values: '[0 O O]' | three-element vector
Default: '[0 0 O]

Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta] — Initial
airspeed, angle of attack, and sideslip angle
[0 0 O] (default) | three-element vector

Initial airspeed, angle of attack, and sideslip angle, specified as a three-element vector.

Programmatic Use

Block Parameter: Vm_0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial wind orientation [bank angle,flight path angle,heading angle] — Initial
wind orientation
[0 O O] (default) | three-element vector

Initial wind angles [bank, flight path, and heading], specified as a three-element vector in radians.

Programmatic Use

Block Parameter: wind 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial body rotation rates [p,q,r] — Initial body rotation
[0 0 O] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use

Block Parameter: pm 0

Type: character vector

Values: '[0 O O] ' | three-element vector
Default: '[0 0 O]

Initial mass — Initial mass
1.0 (default) | scalar
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Initial mass of the rigid body, specified as a double scalar.

Programmatic Use

Block Parameter: mass 0
Type: character vector
Values: '1.0"' | double scalar
Default: '1.0'

Inertia in body axis — Inertia of body
eye(3) (default) | scalar

Inertia of the body, specified as a double scalar.

Programmatic Use

Block Parameter: inertia
Type: character vector

Values: 'eye(3)' | double scalar
Default: 'eye(3)'

Include inertial acceleration — Include inertial acceleration port
off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Ay, port, select this parameter.

Programmatic Use

Block Parameter: abi flag
Type: character vector
Values: 'off' | 'on'
Default: of f

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

» To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

* To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

» If a parameter is empty (' '), no name is assigned.
* The state names apply only to the selected block with the name parameter.
* The number of states must divide evenly among the number of state names.

* You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

* To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.
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Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name
"' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: xme statename

Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’

Velocity: e.g., 'V' — Velocity state name
"' (default) | character vector

Velocity state names, specified as a character vector.

Programmatic Use

Block Parameter: Vm statename
Type: character vector

Values: '' | character vector
Default: '’

Incidence angle e.g., 'alpha' — Incidence angle state name
"' (default) | character vector

Incidence angle state name, specified as a character vector.

Programmatic Use

Block Parameter: alpha statename
Type: character vector

Values: ''

Default: '

Sideslip angle e.g., 'beta’' — Sideslip angle state name
"' (default) | character vector

Sideslip angle state name, specified as a character vector.

Programmatic Use

Block Parameter: beta statename
Type: character vector

Values: ''

Default: '

Wind orientation e.g., {'mu', 'gamma', 'chi'} — Wind orientation state names
"' (default) | comma-separated list surrounded by braces

Wind orientation state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: wind statename
Type: character vector

Values: ''

Default: '

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'gk'} — Quaternion vector state name
"' (default) | comma-separated list surrounded by braces
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Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: quat statename

Type: character vector

Values: '' | comma-separated list surrounded by braces
Default: '’

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names
"' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: pm statename

Type: character vector

Values: ' ' | comma-separated list surrounded by braces
Default: '’

Mass: e.g., 'mass' — Mass state name
"' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass statename
Type: character vector

Values: '' | character vector
Default: '’
Algorithms

The relationship between the wind angles [py)(]T can be determined by resolving the wind rates into

the wind-fixed coordinate frame.

Pw i 1 0 0 ][0 1 0 0 ]fcosy 0 —siny][0 i
Qw|=10|+1|0 cosu sinu||p[+|0 cosp sinu|[ O 1 O 05]‘1)'/
I'w 0 0 —sinu cospuf|0 0 —sinp cosp|[siny 0 cosy ||y X

Inverting J then gives the required relationship to determine the wind rate vector.

1 (sinutany) (cosputany) Pw

Jii Pw 0 _

7l = Tlaw| = C(.)S]l —sinu G
. sinpy cosp

4 Tw cosy cosy w

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.

Pw pp — Bsina
qQw|=DMCyp| aqp—a

T'w rp + Becosa
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Using this relationship in the wind rate vector equations, gives the relationship between the wind
rate vector and the body-fixed angular rates.

i Dy (1) (sinutany) (cosp.tany) pp — Bsina

pl=Jlaw| =" CFH T pme,, g -d

i sinu cospi .

X Tw cosy cosy b + Bcosa
References

[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation. New York: John Wiley & Sons,
1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) | Custom
Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom
Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple
Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass
6DOF Wind (Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)

Introduced in R2006a
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6th Order Point Mass (Coordinated Flight)

Calculate sixth-order point mass in coordinated flight

Library: Aerospace Blockset / Equations of Motion / Point Mass
FK(NI B Ovch v (rad)
FaniMass X [ad)
F,iN) xv'";::
oordinated X;::tml
FL N Fant X, im)
Description

The 6th Order Point Mass (Coordinated Flight) block performs the calculations for the translational
motion of a single point mass or multiple point masses. For more information on the system for the
translational motion of a single point mass or multiple mass, see “Algorithms” on page 5-131.

The 6th Order Point Mass (Coordinated Flight) block port labels change based on the input and
output units selected from the Units list.

Limitations

* The block assumes that there is fully coordinated flight, i.e., there is no side force (wind axes) and
sideslip is always zero.

* The flat Earth reference frame is considered inertial, an approximation that allows the forces due
to the Earth motion relative to the "fixed stars" to be neglected.

Ports
Input

Port_1 — Force in x-axis
scalar | array

Force in x-axis, specified as a scalar or vector, in selected units.

Data Types: double

Port_2 — Force in y-axis
scalar | array

Force in y-axis, specified as a scalar or vector, in selected units.

Data Types: double

Port_3 — Force in z-axis
scalar | array

Force in z-axis, specified as a scalar or vector, in selected units.

Data Types: double
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Output

Port_1 — Flight path angle
scalar | array

Flight path angle, returned as a scalar or vector, in radians.

Data Types: double

Port_2 — Heading angle
scalar | array

Heading angle, returned as a scalar or vector, in radians.

Data Types: double

Port_3 — Airspeed
scalar | array

Airspeed, returned as a scalar or vector, in selected units.

Data Types: double

Port_4 — Downrange or amount traveled east
scalar | array

Downrange or amount traveled east, returned as a scalar or vector, in selected units.

Data Types: double

Port_5 — Crossrange or amount travelled north
scalar | array

Crossrange or amount traveled north, returned as a scalar or vector, in selected units.

Data Types: double

Port_6 — Altitude or amount or travelled up
scalar | array

Altitude or amount traveled up, returned as a scalar or vector, in selected units.
Data Types: double
Parameters

Units — Units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Forces Velocity Position Mass
Metric (MKS) newtons meters per second |meters kilograms
English pounds feet per second feet slugs

(Velocity in

ft/s)
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Units Forces Velocity Position Mass
English pounds knots feet slugs
(Velocity in

kts)

Programmatic Use

Block Parameter: units

Type: character vector

Values: 'Metric (MKS)' | 'English (Velocity in ft/s)'| 'English (Velocity in
kts)'

Default: 'Metric (MKS)'

Initial flight path angle — Initial flight path angle
0 (default) | scalar | vector

Initial flight path angle of the point mass(es), specified as a scalar or vector.

Programmatic Use

Block Parameter: gamma0
Type: character vector
Values: scalar | vector
Default: '0'

Initial heading angle — Initial heading angle
0 (default) | scalar | vector

Initial heading angle of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: chi0
Type: character vector
Values: scalar | vector
Default: '0'

Initial airspeed — Initial airspeed
100 (default) | scalar | vector

Initial airspeed of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: V0
Type: character vector
Values: scalar | vector
Default: '100'

Initial downrange [East] — Initial downrange
0 (default) | scalar | vector

Initial downrange of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: x0
Type: character vector
Values: scalar | vector
Default: '0'
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Initial crossrange [North] — Initial cross range
0 (default) | scalar | vector

Initial crossrange of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: y0
Type: character vector
Values: scalar | vector
Default: '0'

Initial altitude [Up] — Initial altitude
0 (default) | scalar | vector

Initial altitude of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: h0
Type: character vector
Values: scalar | vector
Default: '0'

Initial mass — Point mass
1.0 (default) | scalar | vector

Mass of the point mass(es), specified as a scalar or vector.

Programmatic Use

Block Parameter: mass0
Type: character vector
Values: scalar | vector
Default: '1.0'

Algorithms

This figure shows the system for the translational motion of a single point mass or multiple point
masses.

Morth

The translational motion of the point mass [Xg,uXnornXu,]" are functions of airspeed (V), flight path
angle (y), and heading angle (y),
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F, = mv
F), = (mVcosy)y
F,=mVy

Xgast = Vcosycosy
X North = Vsinycosy

Xyp = Vsiny

where the applied forces [F,F,F,]" are in a system is defined by x-axis in the direction of vehicle
velocity relative to air, z-axis is upward, and y-axis completes the right-handed frame, and the mass of
the body m is assumed constant.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

4th Order Point Mass (Longitudinal) | 4th Order Point Mass Forces (Longitudinal) | 6th Order Point
Mass Forces (Coordinated Flight) | 6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF
(Quaternion) | 6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom
Variable Mass 6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom
Variable Mass 6DOF Wind (Quaternion) | Custom Variable Mass 6DOF Wind (Wind Angles) | Simple
Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass
6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF Wind (Quaternion) | Simple Variable Mass
6DOF Wind (Wind Angles)

Introduced before R2006a
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6th Order Point Mass Forces (Coordinated Flight)

Calculate forces used by sixth-order point mass in coordinated flight

Library: Aerospace Blockset / Equations of Motion / Point Mass
i

) Dr F"‘ P

Hweiant  poi mass

)Thruat FE- g

I

h- M F b

Ao

Description

The 6th Order Point Mass Forces (Coordinated Flight) block calculates the applied forces for a single
point mass or multiple point masses. For more information on the system for the applied forces, see
“Algorithms” on page 5-134.

Limitations

* The block assumes that there is fully coordinated flight, i.e., there is no side force (wind axes) and
sideslip is always zero.

» The flat Earth reference frame is considered inertial, an approximation that allows the forces due
to the Earth motion relative to the "fixed stars" to be neglected.

Ports
Input

Lift — Lift
scalar | array

Lift, specified as a scalar or array, in units of force.

Data Types: double

Drag — Drag
scalar | array

Drag, specified as a scalar or array, in units of force.

Data Types: double

Weight — Weight
scalar | array

Weight, specified as a scalar or array, in units of force.

Data Types: double

Thrust — Thrust
scalar | array
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Thrust, specified as a scalar or array, in units of force.

Data Types: double

¥ — Flight path angles
scalar | array

Flight path angle, specified as a scalar or array, in radians.

Data Types: double

p — Bank angle
scalar | array

Bank angle, specified as a scalar or array, in radians.

Data Types: double

a — Angle of attack
scalar | array

Angle of attack, specified as a scalar or array, in radians.

Data Types: double
Output

F, — Force in x- axis
scalar | array

Force in x-axis, specified as a scalar or array, in units of force.

Data Types: double

F, — Force in y- axis
scalar | array

Force in y-axis, specified as a scalar or array, in units of force.

Data Types: double

F, — Force in z- axis
scalar | array

Force in 2-axis, specified as a scalar or array, in units of force.

Data Types: double

Algorithms

This figure shows the applied forces in the system used by this block.
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The applied forces [F,F,F,]" are in a system is defined by x-axis in the direction of vehicle velocity
relative to air, z-axis is upwards and y-axis completes the right-handed frame and are functions of lift
(L), drag (D), thrust (T), weight (W), flight path angle (y), angle of attack (a), and bank angle (u).

F, = Tcosa — D — Wsiny

F,= (L + Tsina)sinu

F, = (L + Tsina)cospu — Wcosy
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
4th Order Point Mass (Longitudinal) | 4th Order Point Mass Forces (Longitudinal) | 6th Order Point
Mass (Coordinated Flight)

Introduced before R2006a
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Acceleration Conversion

Convert from acceleration units to desired acceleration units
Library: Aerospace Blockset / Utilities / Unit Conversions

s = P

LY.

Description

The Acceleration Conversion block computes the conversion factor from specified input acceleration
units to specified output acceleration units and applies the conversion factor to the input signal.

The Acceleration Conversion block port labels change based on the input and output units selected
from the Initial unit and Final unit parameters.

Ports
Input

Port_1 — Acceleration
scalar | array

Acceleration, specified as a scalar or array, in initial acceleration units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Acceleration
scalar | array

Acceleration, returned as a scalar or array, in final acceleration units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double
Parameters

Initial unit — Input units
ft/ss (default) | m/s? | km/s? | in/s? | km/h-s | mph/s |G's

Input units, specified as:

m/s? |Meters per second squared
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ft/s? Feet per second squared

km/s? Kilometers per second squared
in/s? Inches per second squared
km/h-s Kilometers per hour per second
mph-s Miles per hour per second

G's g-units

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector

Values: 'ft/s”s| 'm/s”2' | 'km/s”2"' | 'in/s”2"' | 'km/h-s' | 'mph/s' | 'G'Ss"

Default: 'ft/s?'

Final unit — Output units

ft/s"2"' (default) | m/s”2 | km/s”2 | in/s”2 | km/h-s | mph/s|G's

Output units, specified as:

m/s? Meters per second squared
ft/s? Feet per second squared

km/ s? Kilometers per second squared
in/s? Inches per second squared
km/h-s Kilometers per hour per second
mph-s Miles per hour per second

G's g-units

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector

Values: 'ft/s”2'| 'm/s"2"' | 'km/s”2"' | 'in/s”2"' | 'km/h-s' | 'mph/s' | 'G'S"

Default: ' ft/s?'

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Angle Conversion | Angular Acceleration Conversion | Angular Velocity Conversion | Density
Conversion | Force Conversion | Length Conversion | Mass Conversion | Pressure Conversion |
Temperature Conversion | Velocity Conversion
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Adjoint of 3x3 Matrix

Compute adjoint of matrix
Aerospace Blockset / Utilities / Math Operations

Library:

adjial L
(23]

Description

The Adjoint of 3x3 Matrix block computes the adjoint matrix for the input matrix. For related
equations, see “Algorithms” on page 5-139.

Ports

Input

Port_1 — Input matrix

3-by-3 matrix

Input matrix, specified as a 3-by-3 matrix, in initial acceleration units.

Data Types: double

Output

Port_1 — Output acceleration

3-by-3 matrix

Output acceleration, returned as a 3-by-3 matrix, in final acceleration units.

Data Types: double

Algorithms

The input matrix has the form of

A11 A1p Ar3
A=Ay Ay Ay
A3y Azp Azz

The adjoint of the matrix has the form of

adj(A) =

+

Ay Ags
A3 A3z
Ay A3
A3p Asz3
Ay A
A3y Az

A1y Ag3
A3 A3z
A1 A
A3p Az3
A1 A
A3y Az

+

A1 A3
Ay A3
A1 Agg
Ay A3
A1 A
A1 A
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Create 3x3 Matrix | Determinant of 3x3 Matrix | Invert 3x3 Matrix

Introduced before R2006a
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Aerodynamic Forces and Moments

Compute aerodynamic forces and moments using aerodynamic coefficients, dynamic pressure, center
of gravity, center of pressure, and velocity

Library: Aerospace Blockset / Aerodynamics
) Coefrd" F,:d" b

p L.

p. [c] "

A wer P

Description

The Aerodynamic Forces and Moments block computes the aerodynamic forces and moments about
the center of gravity.

The Aerodynamic Forces and Moments block port labels change based on the coordinate system
selected from the Input axes, Force axes, and Moment axes list.

Limitations

* The default state of the block hides the Vj, input port and assumes that the transformation is body-
body.

» The center of gravity and the center of pressure are assumed to be in body axes.

+ While this block has the ability to output forces and/or moments in the stability axes, the blocks in
the Equations of Motion library are currently designed to accept forces and moments in either the
body or wind axes only.

Ports
Input

Port_1 — Aerodynamic coefficients
six-element vector

Aerodynamic coefficients (in the chosen input axes) for forces and moments, specified as a vector.
These coefficients are ordered into a vector depending on the choice of axes:

Input Axes Input Vector

Body (axial force C, side force Cy, normal force C,, rolling moment C;, pitching moment
C,, yawing moment C,)

Stability (drag force Cpg-g), side force Cy, lift force C;, rolling moment C;, pitching moment Cy,
yawing moment C,)

Wind (drag force Cp, cross-wind force C,, lift force C;, rolling moment C;, pitching moment
Cn, yawing moment C,)

Data Types: double
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Port_2 — Dynamic pressure
scalar | three-element vector

Dynamic pressure, specified as a 1-by-3 array.

Data Types: double

Port_3 — Center of gravity
three-element vector

Center of gravity, specified as a 1-by-3 vector.

Data Types: double

Port_4 — Center of pressure
three-element vector

Center of pressure, specified as a 1-by-3 vector. This can also be taken as any general moment
reference point as long as the rest of the model reflects the use of the moment reference point.

Data Types: double

Port_5 — Velocity in the body axes
three-element vector

Velocity in the body axes. specified as a 1-by-3 vector.

Dependencies

This port is enabled if the Input axes parameter is set to Wind or Stability.
Data Types: double

Output

Port_1 — Aerodynamic forces
three-element vector

Aerodynamic forces (in the chosen output axes), returned as three-element vector, at the center of
gravity in x-, y-, and z-axes.

Data Types: double

Port_2 — Aerodynamic moments
three-element vector

Aerodynamic moments (in the chosen output axes), returned as three-element vector, at the center of
gravity in x-, y-, and z-axes.

Data Types: double
Parameters

Input axes — Coordinate system for input coefficients
Body (default) | Stability | Wind

Coordinate system for input coefficients, specified as Body (default), Stability, or Wind.
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Dependencies

Selecting Stability or Wind enables input port Port 5.

Programmatic Use

Block Parameter: inputAxes

Type: character vector

Values: 'Body' | 'Stability' | 'Wind'
Default: 'Body'

Force axes — Coordinate system for aerodynamic force
Body (default) | Stability | Wind

Coordinate system for aerodynamic force, specified as Body (default), Stability, or Wind.

Dependencies

Selecting Stability or Wind enables input port Port 5.

Programmatic Use

Block Parameter: outputForcesAxes
Type: character vector

Values: 'Body' | 'Stability' | 'Wind'
Default: 'Body'

Moment axes — Coordinate system for aerodynamic moment
Body (default) | Stability | Wind

Coordinate system for aerodynamic moment, specified as Body (default), Stability, or Wind.

Dependencies

Selecting Stability or Wind enables input port Port 5.

Programmatic Use

Block Parameter: outputMomentAxes
Type: character vector

Values: 'Body' | 'Stability' | 'Wind'
Default: 'Body'

Reference area — Reference area
1 (default) | any double value

Reference area for calculating aerodynamic forces and moments, specified as any double value.

Programmatic Use
Block Parameter: S
Type: character vector
Values: any double value
Default: '1'

Reference span — Reference span
1 (default) | any double value

Reference span for calculating aerodynamic moments in x-axes and z-axes, specified as any double
value.
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Programmatic Use
Block Parameter: b
Type: character vector
Values: any double value
Default: '1’

Reference length — Reference length
1 (default) | any double value
Reference length for calculating aerodynamic moment in the y-axes, specified as any double value.

Programmatic Use
Block Parameter: cbar
Type: character vector
Values: any double value
Default: '1'

Algorithms

Let o be the angle of attack and P the sideslip. The rotation from body to stability axes:

cos(a) O sin(a)
Csep= 0 1 0
—sin(a) 0 cos(a)

can be combined with the rotation from stability to wind axes:

cos(B) sin(B) 0
Cw s = |—sin(B) cos(B) 0
0 0 1

to yield the net rotation from body to wind axes:

cos(a)cos(B) sin(B) sin(a)cos(B)
Cy —p = |—cos(a)sin(B) cos(B) —sin(a)sin(B)
—sin(a) 0 cos(a)

Moment coefficients have the same notation in all systems. Force coefficients are given below. Note
there are no specific symbols for stability-axes force components. However, the stability axes have
two components that are unchanged from the other axes.

-D Xa
Fi=|-C|=Cyep-|Ya|=Cuep Fh
Components/Axes X y z
Wind Cp Cc Cp
Stability — Cy Cy
Body Cyx Cy Cz (-Cy)

Given these definitions, to account for the standard definitions of D, C, Y (where Y = -C), and L, force
coefficients in the wind axes are multiplied by the negative identity diag(-1, -1, -1). Forces coefficients
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in the stability axes are multiplied by diag(-1, 1, -1). Cy and Cy are, respectively, the normal and axial
force coefficients (Cy = -Cy).

References

[1] Stevens, B. L., and E. L. Lewis, Aircraft Control and Simulation, John Wiley & Sons, New York,
1992

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Dynamic Pressure | Digital DATCOM Forces and Moments | Estimate Center of Gravity | Moments
about CG due to Forces

Topics
“NASA HL-20 Lifting Body Airframe” on page 3-14

Introduced before R2006a
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Airspeed Indicator

Display measurements for aircraft airspeed
Library: Aerospace Blockset / Flight Instruments

Description
The Airspeed Indicator block displays measurements for aircraft airspeed in knots.

By default, minor ticks represent 10-knot increments and major ticks represent 40-knot increments.
The parameters Minimum and Maximum determine the minimum and maximum values on the
gauge. The number and distribution of ticks is fixed, which means that the first and last tick display
the minimum and maximum values. The ticks in between distribute evenly between the minimum and
maximum values. For major ticks, the distribution of ticks is (Maximum-Minimum)/9. For minor
ticks, the distribution of ticks is (Maximum-Minimum)/36.

The airspeed indicator has scale color bars that allow for overlapping for the first bar, displayed at a
different radius. This different radius lets the block represent maximum speed with flap extended
(Veg) and stall speed with flap extended (Vo) accurately for aircraft airspeed and stall speed.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters

Connection — Connect to signal
signal name

Connect to signal for display, selected from list of signal names.
To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the

signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Minimum — Minimum tick mark value
40 (default) | finite | double | scalar

Minimum tick mark value, specified as a finite double scalar value, in knots.
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Dependencies

The Minimum tick value must be less than the Maximum tick value.

Programmatic Use

Block Parameter: Limits

Type: double

Values: vector

Default: [40 400], where 40 is the minimum value

Maximum — Maximum tick mark value
400 (default) | finite | double | scalar

Specify the maximum tick mark value, specified as a finite double scalar value, in knots.

Dependencies

The Maximum tick value must be greater than the Minimum tick value.

Programmatic Use

Block Parameter: Limits

Type: double

Values: vector

Default: [40 400], where 400 is the maximum value

Scale Colors — Ranges of color bands
0 (default) | double | scalar

Ranges of color bands outside the scale, specified as a finite double scalar value. Specify the
minimum and maximum color range to display on the gauge.

To add a new color, click +. To remove a color, click -.

Programmatic Use

Block Parameter: ScaleColors

Type: n-by-1 struct array

Values: struct array with elements Min, Max, and Color

Label — Name of connected signal
Top (default) | Bottom | Hide

Name of connected signal.
* Top

Show label at the top of the block.
* Bottom

Show label at the bottom of the block.
* Hide
Do not show the label or instructional text when the block is not connected.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector

5-147



5 Blocks

Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is ignored for code generation.
See Also

Altimeter | Artificial Horizon | Exhaust Gas Temperature (EGT) Indicator | Climb Rate Indicator |
Heading Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Topics
“Display Measurements with Cockpit Instruments” on page 2-42

“Programmatically Interact with Gauge Band Colors” on page 2-44
“Flight Instrument Gauges” on page 2-41

Introduced in R2016a
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Altimeter

Display measurements for aircraft altitude
Library: Aerospace Blockset / Flight Instruments

Description

The Altimeter Indicator block displays the altitude above sea level in feet, also known as the pressure
altitude. The block displays the altitude value with needles on a gauge and a numeric indicator.

* The gauge has 10 major ticks. Within each major tick are five minor ticks. This gauge has three
needles. Using the needles, the altimeter can display accurately only altitudes between 0 and
100,000 feet.

* For the longest needle, an increment of a small tick represents 20 feet and a major tick
represents 100 feet.

* For the second longest needle, a minor tick represents 200 feet and a major tick represents
1,000 feet.

* For the shortest needle a minor tick represents 2,000 feet and a major tick represents 10,000
feet.

* For the numeric display, the block shows values as numeric characters between 0 and 9,999 feet.
When the numeric display value reaches 10,000 feet, the gauge displays the value as the
remaining values below 10,000 feet. For example, 12,345 feet displays as 2,345 feet. When a value
is less than 0 (below sea level), the block displays 0. The needles show the appropriate value
except for when the value is below sea level or over 99999 feet. Below sea level, the needles set to
0, over 99,999, the needles stay set at 99,999.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters

Connection — Connect to signal
signal name

Connect to signal for display, selected from list of signal names.
To view the data from a signal, select a signal in the model. The signal appears in the Connection

table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.
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The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Label — Block label location
Top (default) | Bottom | Hide

Block label, displayed at the top or bottom of the block, or hidden.
* Top

Show label at the top of the block.
 Bottom

Show label at the bottom of the block.
* Hide

Do not show the label or instructional text when the block is not connecte